

Bestimmung der Gewindesteifigkeit auf der Grundlage des schubweichen Balkens (Timoschenko-Balken) Attempt of the estimation of the stiffness of the thread based on the Timoshenko beam

Α		
1	Projekt Anlass /Problem, Ziel, Weg Project cause / problem, target, method	 Anlass: In [1] wurde ein Modell für Kraftübertragung in einer Schraubenverbindung vorgestellt. Für die Kraftübertragung im Gewinde wird hierbei ein Teilmodell benötigt, welches die Deformation des Gewindes bei Belastung unter Berücksichtigung von Geometrie und Materialeigenschaften beschreibt. In [2] wird in diesem Zusammenhang wird die Gewindesteifigkeit eine Gewindesteifigkeit C_G [^N/_{mm}] = 0,34 ⋅ E ⋅ d angegeben. In der Literatur konnte kein Hinweis gefunden werden, wie dieser Wert ermittelt wurde. Hierbei wird davon ausgegangen, dass Schraube und Mutter den gleichen E-Modul haben. Ziel: Es sind also drei Fragen zu beantworten: Ist die Formel nachvollziehbar hinsichtlich der Parameter und der Größenordnung des Koeffizienten? Kann die in [2] angegebene Steifigkeit C_G = 0,34 ⋅ E ⋅ d für das in [1] angegebene Modell verwendet werden. Was passiert, wenn Schraube und Mutter unterschiedliche E-Module haben? Weg: Die Steifigkeit einer Gewindepaarung C_G = F/w soll mit Hilfe eines Balkenmodells, welches mit einer Flächenlast q(x) belastet ist, unter der Berücksichtigung von Biege- und Schubspannung (<i>Timoschenko-Balken</i>) ermittelt werden.
1		 Cause and problem: A model for the force transfer is presented in [1]. For the force transfer in the thread a submodel is required here in, which the deformation of the thread under Load depend on the geometry and material conditions describes. In this context a stiffness of the thread C_G [^N/_{mm}] = 0,34 ⋅ E ⋅ d. is specified in [2]. It could found no evidence in the literature, how the value was determined. It is assumed in this equation, that the E-moduli are equal. Objective: There are three questions to be answered: Is the equation C_G = 0,34 ⋅ E ⋅ d reproducible / comprehensible with regard to the parameters and value of the coefficient? Is the in [2] specified stiffness usable for the in [1] presented model. What happens in case when the E-moduli of Screw (bolt) and nut are different? Method: The stiffness of a matching of thread C_G = F/w is to be determined by means of a beam model which is loaded with a line load q(x) taking in account the bending stress and the shear stress (<i>Timoshenko-beam</i>). KJ. Bladt: Lastverteilung in einem Gewinde / Load distribution in a thread http://www.jbladt.de/technik/maschinenelemente-machine-elements/ D. Schlottmann: Maschinenelemente – Grundlagen, VEB Verlag, Technik Berlin, 1973, Kap. 5. Gewinde / P. Goetze, S. 221
2	Modellvorstellung und qualitative Beschreibung der Lastverteilung an der Gewindeflanke model conception and qualitative description of the load distribution on the thread flank	
3	Annahmen und Feststellungen assumptions and assessments	 Das Gewinde wird idealisiert durch einen kurzen, fest eingespannten Kragträger mit veränderlicher Höhe und konstanter Breite B = π · d₂/2. Diese Breite B wurde gewählt, da bei einem ebenen Schnitt nur die Hälfte des Gewindes erfasst wird. B entspricht dem belasteten Umfangsbereich in einem ebenen Schnitt. Als Kontaktmodell liegen zwei dieser Träger spiegelbildlich übereinander, (die Einspannungen liegen sich gegenüber). Die Gewindeflanke (Kragträger) wird durch eine Lastverteilung mit unbekannter Verteilung in Trägerlängsrichtung x beansprucht. In Umfangsrichtung ist diese Lastverteilung konstant. Sie wird im Folgenden als Streckenlast q(x) bezeichnet. Die aus der Streckenlast q(x) resultierende Kraft F wird als bekannt vorausgesetzt.

© Klaus-Jürgen Bladt, Rostock, Germany http://www.jbladt.de/technik/maschinenelemente-machine-elements/

Bestimmung der Gewindesteifigkeit -	3 / 15 Estimation of stiffness of the thread	
	 Kontakt besteht über die gesamte Trägerfläche (Gewindeflanke), so dass beide Träger (Flanken) eine gemeinsame Deformation aufweisen. Da es ein kurzer Träger ist, wird bei der Biegelinienberechnung sowohl die Verformung durch die Biegespannung und die Schubspannung berücksichtigt (Timoschenko-Balken). Die Streckenlast q(x) ist wie folgt gekennzeichnet: Die Streckenlasten für beide Flanken liegen sich spiegelbildlich gegenüber: {+q(x)} und {-q(x)} Die Streckenlast hat die Reaktionslastverteilung Q'(x) = -q(x) im Balken. Die Spitzen der gepaarten Gewindegänge liegen sich jeweils gegenüber. An den Spitzen des jeweiligen Gewindes kann keine Last übertragen werden und die Deformation hat einen endlichen Wert: q(x = 0) = 0 und q(x = l) = 0 	
	8. Sind die E-Module für Mutter und Schraube unterschiedlich, ergibt sich keine Symmetrie der Belastung (Streckenlast) zur Flankenmitte $x = l/2$	
4	 The threat is idealized by a cantilever beam with variable height and the breadth B = π ⋅ dz/2. The breadth B was chosen because the half of the thread is only detected at a planar section. B corresponds to the loaded peripheral region in a planar section. The contact model consists of two beams, which are arranged in mirror image. The thread flanks are loaded with a distributed load. The distribution is unknown along the length of beam. However this distributed load is constant in direction of circumference. It is called 'line load' in the following, too. The resulting force, which is the result of the line load q(x), is known. The contact is given over the complete area so that both beams have the same displacement (deformation). The bams are short. Therefore the bending line is to calculate with the bending stress and the shear stress. (Timoshenko beam) The line load is characterized as follows: The line load a is characterized as follows: The line load in the beam is Q'(x) = -q(x) The tips of the threads are opposed to another. A load transfer at the tips is not possible. Therefore the deformation / displacement has a finite value at the tips: Q(x = 0) = 0 und q(x = l) = 0 dq(x = 0)/dx = 0 The line loads have a asymmetric distribution in relation to the middle of the beam = l/2, if the E-moduli are different. 	
5 Erwartete Lösung expected solution	 Für E_B = E_M → symmetrische Verteilung der Streckenlast zu l/2 symmetrical distribution of line load Für E_B ≠ E_M → asymmetrische Verteilung der Streckenlast asymmetrical distribution of line load Die Kontaktlinien (Verformungen) sind parallel. The contact lines (displacements) are parallel. 	

В			
1	Allgemeiner Weg general method		
2	Krümmung infolge Biegenormalspannung deflection due to the bending normal stress	$w_{\sigma}^{\prime\prime}(x) = -\frac{M(x)}{E \cdot I(x)}$	
3	info	Diese Gleichung stellt eine Vereinfachung der nichtlinearen Differentialgleichung dar. This equation is a simplification of the non-linear differential equation $w''_{\sigma}(x) = -\frac{1}{E \cdot I(x)} \cdot \frac{M(x)}{(1 + w'^2)^{2/3}}$ Die o.a. gebräuchliche Vereinfachung zur Linearisierung kann bei der Lösung in 'empfindlichen Bereichen' (Bereich der Gewindespitzen) zu störenden Abweichungen führen. The a. m. simplification for the linearization of the equation may cause disturbing deviations in the solution for 'sensitive areas' (area of thread tips).	
5	Neigung infolge Schub deviation due to the bending shear stress	$w'_{\tau} = \frac{Q(x)}{A_S(x) \cdot G} = \frac{Q(x)}{k \cdot A(x) \cdot G}$, $k = \frac{5}{6}$ Korrekturfaktor für Rechteckquerschnitt coefficient for the rectangle profile	
6	info	Diese Gleichung wurde von S. Timoschenko eingeführt, geht von einer mittleren Verformungsenergie aus und ist deshalb auch eine Näherung. This equation was introduced by S. Timoschenko. The equation is the result of the mean of deformation energy. This equation is only a good approximation. The coefficient k is used for consideration of the shape of the cross area \Box .	
9	Krümmumg infolge Biegemoment u. Schub bending due to the bending moment and shear force	$w^{\prime\prime}(x) = w^{\prime\prime}_{\sigma}(x) + w^{\prime\prime}_{\tau}(x)$	
10	Neigung infolge Biegung und Schub Deviation due to the bending moment and shear force	$w'(x) = w'_{\sigma}(x) + w'_{\tau}(x)$	
11	Verformung durch Biegemoment u. Schub displacement due to bending moment and shear force	$w(x) = w_{\sigma}(x) + w_{\tau}(x)$ Kontaktlinie / contact line	

Г

4 / 15

12				
13	Steifigkeit (allgemein) stiffness (in general)	$\mathbb{C} = \frac{F}{w_F} = \frac{Kraft}{Verschiebung} = \frac{1}{display}$	force placement	
14	Modell, Geometrie, erwartete Lastverteilung, Koordinatensystem model geometry, expected load distribution, coordinate system			
15				
16		Schraube / Bolt, screw	Mutter / Nut	
17	Beide Teile des Gewindes both parts of the thread		P x l	

С			
1	Gegebene Größen known parameters		
2	Kraft force	F	' [N]
3	Mittlerer Gewindedurchmesser mean thread diameter	d ₂	[mm]
4	Gewindesteigung thread gradient	Р	[mm]
5	Flankenwinkel Edge angle	β [°] (= 60° Metriso	ches Gewinde / metric thread)
6	Gewindetiefe depth of thread	$l = \frac{P}{2 \cdot tan \beta/2} \ [mm] \qquad (f \ddot{u} r n)$	netrisches Gewinde: $l = P \cdot \cos \beta/2$)
7	Längenkoordinate Belastungsbereich coordinate, load range	x [mm], $\xi = \frac{x}{l} [-]$ $x = l \cdot \xi =$ $dx = l \cdot d \xi$	$0 \le x \le l$ $0 \le \xi \le l$ $= \frac{P}{2 \cdot tan\beta/2} \cdot \xi$ $= \frac{P}{2 \cdot tan\beta/2} \cdot d\xi$
8	Gewindehöhe Height of thread	$h_B(x) = P \cdot \left(1 - \frac{x}{l}\right) = h_B(\xi) = P \cdot (1 - \xi)$	$h_M(x) = P \cdot \frac{x}{l} = h_M(\xi) = P \cdot \xi ,$
9	Effektiv belasteter Umfangsbereich real loaded peripheral region	$B \approx \pi \cdot \frac{d_2}{2} = const$	
10	Querschnittsfläche cross area	$A_B(x) = \frac{\pi \cdot d_2}{2} \cdot h_B(x) = A_B(\xi) = \pi \cdot d_2/2 \cdot P \cdot (1 - \xi)$	$A_M(x) = \pi \cdot \frac{d_2}{2} \cdot h_B(x) = A_M(\xi) = \pi \cdot \frac{d_2}{2} \cdot P \cdot \xi$
11	Effektive Querschnittsfläche effective cross area	$A_{BS}(x) = k \cdot B \cdot P \cdot \left(1 - \frac{x}{l}\right) = A_{BS}(\xi) = k \cdot B \cdot P \cdot (1 - \xi)$	$A_{MS}(x) = k \cdot B \cdot P \cdot \frac{x}{l} = A_{MS}(\xi) = k \cdot B \cdot P \cdot \xi$
12	Flächenträgheitsmoment area moment of inertia	$I_B(x) = \frac{B \cdot h_B^3(x)}{12} \approx \frac{\frac{\pi \cdot d_2}{2} h_B^3(x)}{12}$ $I_B(x) = \frac{B}{12} \cdot P^3 \cdot \left(1 - \frac{x}{l}\right)^3 = I_B(\xi) = \frac{B}{12} \cdot P^3 \cdot (1 - \xi)^3$	$I_{M}(x) = \frac{B \cdot h_{M}^{3}(x)}{12} \approx \frac{\pi \frac{d_{2}}{2} h_{M}^{3}(x)}{12}$ $I_{BM}(x) = \frac{B}{12} \cdot P^{3} \cdot \left(\frac{x}{l}\right)^{3} = I_{B}(\xi) = \frac{B}{12} \cdot P^{3} \cdot \xi^{3}$
13	E-Modul modulus of elasticity	$E_B [N/mm^2]$	$E_M [N/mm^2]$
14	Gleitmodul shear modulus	$G_B\left[\frac{N}{mm^2} ight] = g_B \cdot E_B$	$G_M \left[\frac{N}{mm^2} \right] = g_M \cdot E_M$

© Klaus-Jürgen Bladt, Rostock, Germany http://www.jbladt.de/technik/maschinenelemente-machine-elements/

5/15

15	Umrochnungsfaktor	$g_B = \frac{1}{2 \cdot (1+\nu)} \approx \frac{1}{2.6} = 0.3846$	$g_M = \frac{1}{2 \cdot (1+\nu)} \approx \frac{1}{2.6} = 0.3846$
	conversion factor	Poisson-Zahl $v_{stahl} = v_{steal} \approx 0.28 \dots 0.3$	0, $v_{Alu} \approx 0.34$, $v_{Messing} = v_{brass} \approx 0.37$
		$V_{Bronze} \approx 0.55, V_{Cu} \approx 0.55$	° 0,55 ,
16		Für die weitere Berechnung wird der Wert $ \nu pprox 0,30$ verwende	et! / The value $\nu\approx 0{,}30$ is used for the following calculations!
		[3] E. Buchner, H. Massow, J. Winkler u. A.: "Technische Mecl	hanik für Ingenieurschulen", Bd. II, VEB Fachbuchverlag Leipzig,
		1965, S. 283 – 285. [4] D.Meschede: Gehrtsen – Physik" Springer 1995 21 Aut	lage S 133
17			
	Ealdan für affalding	Für Rechteckquerschnitt $k = \frac{5}{2} = \frac{1}{2} = 0.8333$	
18	Faktor für effektive	6 1,2 [5] F. Buchner, H. Massow, J. Winkler J. A. Technische Mer	chanik für Ingenieurschulen" Bd. II. VEB Eachbuchverlag Leinzig
10	factor of the effective shear area	1965, S. 283 – 285.	
		[6] KH. Grote, J. Feldhusen: "Dubbel, Taschenbuch für Mas	chinenbau", Springer, 2011, 23. Auflage, Kapitel C, S. 22.
19	Koeffizient $c = k \cdot g$ coefficient	$c_B = k \cdot g_B$ [-]	$c_M = k \cdot g_M \ [-]$
20	Gesuchte Größen	Schraube / bolt (screw)	Mutter / nut
04	wanted parameters	M (.) [N]	M (a)[Maran]
21		$M_B(x) [Nmm]$	$M_M(x)[Nmm]$
22	Streckenlast / Lestvorteilung	$Q_B(x)[N]$	$Q_M(x)[N]$
23	line load / load distribution	$q_B(x) [N/mm]$	$q_M(x)$ [N/mm]
24	Querkraftgradient line load gradient	$Q'_B[N/mm]$	$Q'_M [N/mm]$
25	Steifigkeit stiffness	$\mathbb{C}_{GB}\left[N/mm ight]$	$\mathbb{C}_{GM}\left[N/mm ight]$
26	Gesamtsteifigkeit	© ₆ [N/mm]
27	Indices		
28	Kraft / force	F	
29	Schraube / bolt (screw)	··· <i>B</i>	
30	Mutter / nut	··· <i>M</i>	
31	infolge Biegespannung due to bending stress	…σ	
32	infolge Schubspannung due to shear stress		
33	infolge Moment due to moment	··· <i>M</i>	
34	infolge Querkraft		
	aue to shear force	×	
35	distribution of load	Q'(x) = j	$f(F, E, P, \beta)$
	Bedingung für gleiche		
	Belastung der Gewinde		$\left \int_{0}^{t} dt dt dt \right $
36	(Schraube und Mutter)	$F = \prod_{n} Q'_B(x) dx$	$x = \left \int_{\Omega} Q'_{M}(x) dx \right $
	condition for the same load	150	I I ^v U I

D			
1	Problem	Die wirkende Kraft $\mathbf{F} = \mathbf{F}_{\mathbf{G}}$ ist bekannt, aber nicht deren Verteilung $q(x)$ und die entsprechende Reaktionskraft im Träger $Q'(x)$. The acting force F is known - but its distribution $q(x)$ and the associated reaction force in the beam $Q'(x)$ are unknown.	

Zusammenhang der Querkräfte correlation of the shear forces	$\begin{array}{ll} Q_M(x) - Q_B(x) = +F & \text{Hinweis: } Q_{M(x)} \\ Q_B(x) - Q_M(x) = -F & \text{Note: } Q_{M(x)} \end{array}$	$(x) \oplus$ und $Q_{B(x)} \ominus$ sind entgegengesetzt gerichtet $(x) \oplus$ and $Q_{B(x)} \ominus$ are oppositely directed
Zusammenhang der Querkräfte correlation of the shear forces	$\frac{dQ_B}{dx} = Q'_B(x) \Rightarrow dQ_B = +Q'_B(x) \cdot dx$	$\frac{dQ_M}{dx} = Q'_M(x) \rightarrow dQ_M = dQ'_M(x) \cdot dx$
Randbedingungen boundary conditions	$\frac{dQ_B}{dx} = Q_B' = Q_B' = Die Vorzeichen von Q_B(x) und Q_M(x) ergeben sich aus gegenüberliegenden Einspannungen, mit denen die Integra The sign of Q_B(x) und Q_M(x) result from the mirrored load and constants are determined. Q_B(x = 0) = -F, Q_B(x = l) = 0$	$\frac{dQ_{M}}{dx}$ $\frac{dQ_{M}}{Q'_{M}}$ der spiegelbildlichen Belastung und den ationskonstanten festgelegt werden. the opposite clamping of the beams, with whom the integration $Q_{M}(x = l) = +F, Q_{M}(x = 0) = 0,$
	$Q'_B(x=0) = 0, \qquad Q'_B(x=l) = 0,$	$Q'_M(x=l) = 0, Q'_M(x=0) = 0$
	$Q_B''(x=0) = 0, \qquad Q_B''(x=l) = 0$	$Q_M''(x=0) = 0, Q_M''(x=l) = 0$
Verlauf der Querkraft Richtung der Kraft beachten! Shear force Note the direction of force!	$Q_B(x) = \int Q'_B(x) dx = \int Q'_M(x)$ $\underbrace{Q_B(x=0)}_{=-F} = \underbrace{Q_M}_{C_{MQ}}$ $C_{MQ} = \underbrace{Q_B(x)}_{Q_B(x)} = \underbrace{Q_M}_{Q_B(x)}$	$dx + C_{MQ} = Q_M(x) + C_{MQ} =$ $\frac{Q_M(x) + C_{MQ}}{C_{MQ}} =$ $\frac{Q_M(x) - F}{C_{MQ}}$
	Schraube / bolt	Mutter / nut
Festlegungen arranging of the correlation of shear forces	$Q_B(x) = +Q_M(x) - F$	$\frac{dM_M}{dx} = Q_M(x)$
Momente Drehrichtung beachten Moments note the direction of bending moments	$\frac{dM_B}{dx} = +Q_B(x)$	$\frac{dM_M}{dx} = Q_M(x)$
Verlauf der Momente course of moments gleiche Drehrichtung der Biegemomente, entgegensetzte Richtung der Querkraft beachten! Note the same direction of bending moments and the opposite direction of shear forces	$M_{B}(x) = -\int Q_{M}(x)dx + F \cdot x + C_{BM}$ $M_{B}(x) = -M_{M}(x) + F \cdot x + C_{BM}$ $M_{B}(x = l) = -M_{M}(x = l) + F \cdot l + C_{BM} = 0$ $M_{M}(x = l) = M_{Ml}$ allgemein nicht bekannt, Iteration erforderlich! Generally unknown Iteration necessary $\frac{Sonderfall:}{Special case}: \frac{E_{M}}{E_{B}} = 1 \Rightarrow M_{Ml} = F \cdot \frac{l}{2}$ Ausgangswert für Iteration / start value for iteration $C_{BM} = -l \cdot F + M_{Ml}$ $M_{B}(x) = -\int Q_{M}(x)dx - F \cdot x + l \cdot F + M_{Ml}$ $M_{B}(x) = -\int Q_{M}(x)dx - F \cdot (l - x) + M_{Ml}$	$M_M(x) = \int Q_M(x)dx + C_{MM}$ $M_M(x = 0) = 0 \rightarrow C_{MM} = 0$ $M_M(x) = \int Q_M(x)dx$
	Zusammenhang der Querkräfte correlation of the shear forces Zusammenhang der Querkräfte correlation of the shear forces Randbedingungen boundary conditions Verlauf der Querkraft Richtung der Kraft beachten! Shear force Note the direction of force! Festlegungen arranging of the correlation of shear forces Momente Drehrichtung beachten Moments note the direction of bending moments Verlauf der Momente course of moments Verlauf der Momente course of moments gleiche Drehrichtung der Biegemomente, entgegensette Richtung der Querkraft beachten! Note the same direction of bending moments and the opposite direction of shear forces	Zusammenhang der Querkräfte correlation of the shear forces $Q_M(x) - Q_B(x) = +F$ $Q_B(x) - Q_M(x) = -F$ Hinweis: $Q_{M(x)}$ $Q_B(x) - Q_M(x) = -F$ Zusammenhang der Querkräfte correlation of the shear forces $\frac{dQ_B}{dx} = Q'_B(x) \rightarrow dQ_B = +Q'_B(x) \cdot dx$ Randbedingungen boundary conditions $\frac{dQ_B}{dx} = Q'_B(x) \rightarrow dQ_B = +Q'_B(x) \cdot dx$ boundary conditions $\frac{dQ_B}{dx} = Q'_B(x) = 0$ $Q'_B(x) = 0$ $\frac{dQ_B}{dx} = Q'_B(x) = 0$ $Q'_B(x) = 0$ Verlauf der Querkraft Richtung der Kratt beachtent Note the direction of force! $Q_B(x) = 0$ $Q''_B(x) = 0$ $Q''_B(x) = 0$ $Q''_B(x) = 0$ Verlauf der Querkraft Richtung der Kratt beachtent Shear force Note the direction of force! $M_B(x) = -\int Q_M(x) dx = \int Q'_M(x) dx$ $Q_B(x) = Q_B(x) = Q_M(x)$ Verlauf der Querkraft Richtung der Kratt beachtent Shear force Note the direction of force! $M_B(x) = -\int Q_M(x) dx + F \cdot x + C_{BM}$ $M_B(x) = -M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = 0$ $M_M(x = 1) = M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = -M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = 0$ $M_M(x = 1) = M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = 0$ $M_M(x = 1) = M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = 0$ $M_M(x = 1) = M_M(x) + F \cdot x + C_{BM}$ $M_B(x) = 0$ $M_M(x) = F \cdot 1 + M_M(x)$ $M_B(x) = -\int Q_M(x) dx - F \cdot x + 1 \cdot F + M_M(x)$ $M_B(x) = -\int Q_M(x) dx - F \cdot x + 1 \cdot F + M_M(x)$ $M_B(x) = -\int Q_M(x) dx - F \cdot x + 1 \cdot F + M_M(x)$

F				
1	Ausgangsgleichungen für die Ermittlung der Verformungen basic equations for determination of the deformations			
2	Krümmung infolge Biegung bending	$w_{B\sigma}^{\prime\prime}(x) = \frac{M_B(x)}{E_B \cdot I_B(x)} = \frac{\int Q_B(x) dx}{E_B \cdot I_B(x)}$	$w_{M\sigma}^{\prime\prime}(x) = \frac{M_M(x)}{E_M \cdot I_M(x)} = \frac{\int Q_M(x) dx}{E_M \cdot I_M(x)}$	
3	Neigung infolge Schub gradient due to shear stress	$w'_{B\tau}(x) = \frac{Q_B(x)}{G_B \cdot A_{SB}(x)}$	$w'_{M\tau}(x) = -\frac{Q_M(x)}{G_{M'}A_{SM}(x)}$	
4	Krümmung infolge Schub b ending due to shear stress	$w_{BT}''(x) = \frac{d}{dx} \left(\frac{Q_B(x)}{G_B \cdot A_{SB}(x)} \right) = \frac{1}{G_B} \cdot \frac{Q_B'(x) \cdot A_{SB}(x) - Q_B(x) \cdot A_{SB}'(x)}{A_{SB}^2(x)}$	$w_{M\tau}''(x) = -\frac{d}{dx} \left(\frac{Q_M(x)}{G \cdot A_{SM}(x)} \right) = -\frac{1}{G_M} \cdot \frac{Q'_M(x) \cdot A_{SM}(x) - Q_M(x) \cdot A'_{SM}(x)}{A_{SM}^2(x)}$	
5	Bekannter Zusammenhang known correlation	$w'_B(x) = w'_{B\sigma}(x) + w'_{B\tau}(x)$	$w'_M(x) = w'_{M\sigma}(x) + w'_{M\tau}(x)$	
© I	Klaus-Jürgen Bladt, Rostock, German	iy 🖉	status: 2015-10-11	

http://www.jbladt.de/technik/maschinenelemente-machine-elements/

status: 2015-10-11 revised/printed: 2018-02-19 Bestimmung der Gewindesteifigkeit -

7/15

Estimation of stiffness of the thread

DU	summarig der Gewindestenigkeit	17,10	Estimation of stimless of the thread
6		$w_B^{\prime\prime}(x) = w_{B\sigma}^{\prime\prime}(x) + w_{B\tau}^{\prime\prime}(x)$	$w_M''(x) = w_{M\sigma}''(x) + w_{M\tau}''(x)$
7		$W_B''(x) = \frac{1}{E_B} \cdot \frac{M_B(x)}{I_B(x)} + \frac{1}{G_B} \cdot \frac{d}{dx} \left(\frac{Q_B(x)}{A_{SB}(x)}\right)$	$W_M''(x) = \frac{1}{E_M} \cdot \frac{M_M(x)}{I_M(x)} - \frac{1}{G_M} \cdot \frac{d}{dx} \left(\frac{Q_M(x)}{A_{SM}(x)} \right)$

G			
1	Differentialgleichungen zur weiteren Bearbeitung	$w_B''(x) = \frac{1}{E_B} \cdot \frac{M_B(x)}{I_B(x)} + \frac{1}{C_B} \cdot \frac{Q_B'(x) \cdot A_{SB}(x) - Q_B(x) \cdot A_{SB}'(x)}{A_{SB}^2(x)}$	$W''_{M}(x) = \frac{1}{E_{M}} \frac{M_{M}(x)}{I_{M}(x)} - \frac{1}{G_{M}} \cdot \frac{Q'_{M}(x) \cdot A_{SM}(x) - Q_{M}(x) \cdot A'_{SM}(x)}{A^{2}_{SM}(x)}$
2	differential equations for further processing	$w_B''(x) = +\frac{12}{E_B \cdot B \cdot P^3} \cdot \frac{-\int Q_M(x) dx - F(1-x) + M_{ML}}{(1-\frac{x}{l})^3} + \frac{1}{c_B \cdot E_B \cdot B \cdot P} \cdot \frac{Q_M'(x) (1-\frac{x}{l}) + Q_M(x) \cdot \frac{1}{l} \cdot \frac{F}{l}}{(1-\frac{x}{l})^2}$	$W_{M}''(x) = + \frac{12}{E_{M}B \cdot P^{3}} \cdot \frac{\int Q_{M}(x)dx}{\frac{x^{3}}{7}} - \frac{1}{c_{M'}E_{M'}B \cdot P} \cdot \frac{Q_{M}'(x)\frac{x}{4} - Q_{M}(x)\cdot \frac{1}{4}}{\left(\frac{x}{7}\right)^{2}}$
3			
4	Krümmung bending condition	$w_B^{\prime\prime}(x) =$	$w_M''(x)$
5	$\times B \cdot P$	$+\frac{12}{E_B \cdot B \cdot P^3} \cdot \frac{-\int Q_M(x) dx - F \cdot l \left(1 - \frac{x}{l}\right) + M_{ML}}{\left(1 - \frac{x}{l}\right)^3} + \frac{1}{c_B \cdot E_B \cdot B \cdot P} \cdot \frac{+Q'_M(x) \cdot \left(1 - \frac{x}{l}\right) + Q_M(x) \cdot \cdots}{\left(1 - \frac{x}{l}\right)^2}$	$\frac{\frac{1}{l} - F}{\frac{1}{l} - \frac{1}{l}} = + \frac{12}{E_{M} \cdot B \cdot P^{3}} \cdot \frac{\int Q_{M}(x) dx}{\left(\frac{x}{l}\right)^{3}} - \frac{1}{c_{M} \cdot E_{M} \cdot B \cdot P} \cdot \frac{Q'_{M}(x) \cdot \frac{x}{l} - Q_{M}(x) \cdot \frac{1}{l}}{\left(\frac{x}{l}\right)^{2}}$
6		$-\left(\frac{12}{E_{B}\cdot P^{2}}\cdot \frac{1}{(1-\frac{2}{t})^{3}} + \frac{12}{E_{M}\cdot P^{2}}\cdot \frac{1}{\binom{2}{t}}\right) \cdot \int Q_{M}(x)dx + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{\frac{2}{t}}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{\frac{2}{t}}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{\frac{2}{t}}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{\frac{2}{t}}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{\frac{2}{t}}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{B}\cdot E_{B}}\cdot \frac{1}{(1-\frac{2}{t})} - \frac{1}{c_{M}\cdot E_{M}}\cdot \frac{1}{t}\right) \cdot Q'_{M}(x) + \left(\frac{1}{c_{M}\cdot E_$	$\frac{\frac{1}{l}}{\frac{x}{cM^{E}M}} + \frac{1}{\frac{1}{cM^{E}M}} \cdot \frac{\frac{1}{l}}{\binom{x}{l}^{2}} + Q_{M}(x) - \frac{12l}{E_{B}\cdot P^{2}} \cdot \frac{F}{(1-\frac{x}{L})^{2}} - \frac{F}{C_{B'}E_{B'}} \cdot \frac{1}{(1-\frac{x}{L})^{2}} + \frac{12M_{ML}}{E_{B'}P^{2}} \cdot \frac{1}{(1-\frac{x}{L})^{3}} = 0$
7		$-\left(\frac{\frac{12}{E_{B}r^{p_{2}}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{3}}+\frac{12}{E_{M}r^{p_{2}}}\cdot\frac{1}{(\frac{\tau}{r_{1}})^{3}}\right)\cdot\int Q_{M}(x)dx+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{B}E_{B}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}E_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}\right)\cdot Q_{M}(x)+\left(\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1}})^{2}}-\frac{1}{c_{M}}\cdot\frac{1}{(1-\frac{\tau}{r_{1})^{2}}}\right)$	$\cdot \frac{1}{(1-\frac{1}{T})} + \frac{1}{c_M \cdot E_M} \cdot \frac{1}{\frac{2}{T}} \right) \cdot Q'_M(x) - \left(\frac{12!}{E_B \cdot P^2} + \frac{1}{c_B \cdot E_B \cdot I}\right) \cdot \frac{F}{(1-\frac{1}{T})^2} + \frac{12 \cdot M_{ML}}{E_B \cdot P^2} \cdot \frac{1}{(1-\frac{1}{T})^2} = 0$
8	$\times E_M; \overline{E} = \frac{E_M}{E_B}$	$-\frac{12}{p^2} \cdot \left(\frac{E}{(1-\frac{E}{r})^3} + \frac{1}{\binom{E}{r}}\right) \cdot \int Q_M(x) dx + \left(\overline{E} \cdot \frac{1}{c_B \cdot l} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{\binom{E}{r}}\right) \cdot Q_M(x) + \frac{1}{k \cdot g} \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{\binom{E}{r}}\right) \cdot Q_M(x) + \frac{1}{k \cdot g} \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{\binom{E}{r}}\right) \cdot Q_M(x) + \frac{1}{k \cdot g} \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{\binom{E}{r}}\right) \cdot Q_M(x) + \frac{1}{k \cdot g} \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{(1-\frac{E}{r})^2}\right) \cdot Q_M(x) + \frac{1}{k \cdot g} \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{(1-\frac{E}{r})^2}\right) \cdot \frac{1}{(1-\frac{E}{r})^2} + \frac{1}{c_M \cdot l} \cdot \frac{1}{(1-\frac{E}{r})^2} $	$\frac{1}{\frac{x}{t_{l}}} + \frac{1}{c_{M}} \cdot \frac{1}{\frac{x}{t_{l}}} \right) \cdot Q'_{M}(x) - \left(\frac{12 \cdot t_{l}}{p^{2}} + \frac{1}{c_{B'}t_{l}}\right) \cdot \frac{E \cdot F}{\left(1 - \frac{x}{t_{l}}\right)^{2}} + \overline{E} \cdot \frac{12 \cdot M_{ML}}{p^{2}} \cdot \frac{1}{\left(1 - \frac{x}{t_{l}}\right)^{3}} = 0$
9		$-\frac{12}{p^2} \cdot \left(\frac{E(\frac{x}{l})^3 + (1-\frac{x}{l})^3}{(1-\frac{x}{l})^3 \cdot (\frac{x}{l})^3}\right) \cdot \int Q_M(x) dx + \left(\frac{E}{c_{B'}l} \cdot \frac{1}{(1-\frac{x}{l})^2} - \frac{1}{c_{M'}l} \cdot \frac{1}{(\frac{x}{l})^2}\right) \cdot Q_M(x) + \left(\frac{E}{c_B} \cdot \frac{1}{(1-\frac{x}{l})} - \frac{1}{c_{M'}l} \cdot \frac{1}{(\frac{x}{l})^2}\right) \cdot \frac{1}{c_{M'}l} \cdot \frac{1}{(1-\frac{x}{l})^2} - \frac{1}{c_{M'}l} \cdot \frac{1}{(\frac{x}{l})^2} - \frac{1}{c_{M'}l} - \frac{1}$	$\frac{1}{c_M} \cdot \frac{1}{\frac{7}{4}} \cdot Q'_M(x) - \left(\frac{12\cdot l}{p^2} + \frac{1}{c_{B'}l}\right) \cdot \frac{E\cdot F}{(1-\frac{7}{2})^2} + \overline{E} \cdot \frac{12\cdot M_{ML}}{p^2} \cdot \frac{1}{(1-\frac{7}{2})^3} = 0$
10	Singularitäten beseitigen: Elimination of singularities $\times \frac{p^2}{12} \cdot \left(1 - \frac{x}{l}\right)^3 \cdot \left(\frac{x}{l}\right)^3$	$-\frac{12}{p^2} \cdot \left(\frac{\bar{E}(\frac{x}{l_l})^3 + \left(1 - \frac{x}{l_l}\right)^3}{\left(1 - \frac{x}{l_l}\right)^3 \left(\frac{x}{l_l}\right)^2}\right) \cdot \int Q_M(x) dx + \frac{1}{l} \cdot \left(\frac{\frac{E}{2M} \left(\frac{x}{l_l}\right)^2 - \frac{1}{2m} \left(1 - \frac{x}{l_l}\right)^2}{\left(\frac{x}{l_l}\right)^2 \left(1 - \frac{x}{l_l}\right)^3}\right) \cdot Q_M(x) + \left(\frac{\frac{E}{2M} \frac{x}{l_l} + \frac{1}{2m} \left(1 - \frac{x}{l_l}\right)}{\frac{x}{l_l} \left(1 - \frac{x}{l_l}\right)^3}\right) \cdot \frac{1}{2m} \left(\frac{x}{l_l}\right)^2 + \frac{1}{2m} \left(\frac{x}{l_l}$	$Q'_{M}(x) - \left(l + \frac{p^{2}}{12 \cdot c_{B} \cdot l}\right) \cdot \left(\left(1 - \frac{x}{l}\right) \cdot \left(\frac{x}{l}\right)^{3}\right) \cdot \overline{E} \cdot F \cdot l + \overline{E} \cdot M_{ML} \cdot \left(\frac{x}{l}\right)^{3} = 0$
11	Dimensionslose Gleichung dimensionless equation $\overline{Q}(x) = \frac{Q(x)}{F}; \frac{M_{ML}}{F \cdot l} = \overline{M}_{ML}$ $\xi = \frac{x}{l}, d\xi = \frac{dx}{l}$	$-\left(\overline{E}\cdot\left(\frac{x}{l}\right)^{2}+\left(1-\frac{x}{l}\right)^{2}\right)\cdot\int Q_{\mu}(x)dx+\frac{P^{2}}{12\cdot l}\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\left(\frac{x}{l}\right)^{2}-\frac{1}{c_{\mu}}\cdot\left(1-\frac{x}{l}\right)^{2}\right)\cdot\left(\frac{x}{l}\cdot\left(1-\frac{x}{l}\right)\right)\cdot Q_{\mu}(x)+\frac{P^{2}}{12}\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}+\frac{P^{2}}{2}\right)\cdot\left(\frac{\overline{E}}{c_{\mu}}\cdot\frac{x}{l}$	$\frac{1}{c_s} \cdot \left(1 - \frac{x}{l}\right) \cdot \left(\left(\frac{x}{l}\right)^2 \cdot \left(1 - \frac{x}{l}\right)^2\right) \cdot \mathcal{O}_{M}(x) - \left(1 + \frac{p^2}{12 \cdot c_{B} \cdot l^2}\right) \cdot \left(\left(1 - \frac{x}{l}\right) \cdot \left(\frac{x}{l}\right)^2\right) \cdot \bar{E} \cdot F \cdot l + \bar{E} \cdot M_{ML} \cdot \left(\frac{x}{l}\right)^3 = 0$
12	Mit: $\overline{M}_M(\xi) = \int \overline{Q}_M(\xi) d\xi$	$-(\bar{E}\cdot\xi^{3}-(1-\xi)^{3})\cdot\int\bar{Q}_{H}(\xi)d\xi + \frac{p^{2}}{12\ell^{2}}\cdot\left(\frac{E}{c_{M}}\cdot\xi^{2}-\frac{1}{c_{B}}\cdot(1-\xi)^{2}\right)\cdot\left(\xi\cdot(1-\xi)\right)\cdot\bar{Q}_{M}(\xi) + \frac{p^{2}}{12kg^{2}}\left(\left(\frac{E}{c_{M}}\cdot\xi^{2}-\frac{1}{c_{B}}\cdot(1-\xi)^{2}\right)\cdot\left(\xi\cdot(1-\xi)\right)\cdot\bar{Q}_{M}(\xi)\right)$	$\cdot \xi + \frac{1}{c_g} \cdot (1-\xi) \bigg) \cdot \dot{\xi}^2 \cdot (1-\xi)^2 \bigg) \cdot \ddot{Q}'_M(\xi) - \left(1 + \frac{\rho^2}{12c_g t^2}\right) \cdot \left((1-\xi) \cdot \dot{\xi}^3\right) \cdot \vec{E} + \vec{E} \cdot \frac{M_{ML}}{Fl} \cdot \dot{\xi}^3 = 0$
13	$-(\bar{E}\cdot\xi^3+(1-\xi)^3)\cdot\bar{M}_M(\xi)+\frac{p^2}{12\cdot\ell^2}\cdot$	$\frac{\langle \frac{\vec{k}}{c_{M}} \cdot \xi^{2} - \frac{1}{c_{B}} \cdot (1-\xi)^{2} \rangle \cdot \left(\xi \cdot (1-\xi) \right) \cdot \vec{M'}_{M}(\xi) + \frac{p^{2}}{12 \cdot l^{2}} \cdot \left(\left(\frac{\vec{k}}{c_{M}} \cdot \xi + \frac{1}{c_{B}} \cdot (1-\xi) \right) \cdot \right)$	$\left(\xi^{2}\cdot(1-\xi)^{2}\right)\left(\cdot\widetilde{M}''_{M}(\xi)-\widetilde{E}\cdot\xi^{3}\cdot\left\{\left(1+\frac{\rho^{2}}{12\epsilon_{B}t^{2}}\right)\cdot(1-\xi)-\widetilde{M}_{MI}\right\}=0$
14	$c = c_B \approx c_M$	$-(\bar{E}\cdot\xi^{3}+(1-\xi)^{3})\cdot\bar{M}_{M}(\xi)+\frac{p^{2}}{12\cdot c\cdot l^{2}}\cdot(\bar{E}\cdot\xi^{2}-(1-\xi)^{2})\cdot\left(\xi\cdot(1-\xi)\right)\cdot\bar{M}'_{M}(\xi)+\frac{p^{2}}{12\cdot c\cdot l^{2}}\cdot(\bar{E}\cdot\xi^{2}-(1-\xi)^{2})\cdot\left(\xi\cdot(1-\xi)\right)\cdot\bar{M}'_{M}(\xi)+\frac{p^{2}}{12\cdot c\cdot l^{2}}\cdot(\bar{E}\cdot\xi^{2}-(1-\xi)^{2})\cdot(\xi\cdot(1-\xi)^{2})\cdot\bar{M}'_{M}(\xi)+\frac{p^{2}}{12\cdot c\cdot l^{2}}\cdot(\bar{E}\cdot\xi^{2}-(1-\xi)^{2})\cdot(\xi\cdot(1-\xi)^{2})\cdot\bar{M}'_{M}(\xi)$	$\left(\left(\overline{E}\cdot\xi+(1-\xi)\right)\cdot\left(\xi^{2}\cdot(1-\xi)^{2}\right)\right)\cdot\overline{M}''_{M}(\xi)-\overline{E}\cdot\xi^{3}\cdot\left\{\left(1+\frac{P^{2}}{12\cdot c\cdot l^{2}}\right)\cdot\left(1-\xi\right)-\overline{M}_{Ml}\right\}=0$
15	info	$ \bar{Q}_M(\xi) , \ \bar{Q}_B(\xi) \le 1,0, 0.5 \le \bar{E} \le 2.5$	
16	Feststellung declaration	Die exakte Lösung dieser inhomogen linearen Differe Koeffizienten führt über die Lösung der homogenen I partikuläres Integral. Dieses Integral ist nicht bekannt The result is an inhomogeneous linear differential equation of 2 nd o unknown.	entialgleichung 2. Ordnung mit veränderlichen OGL und ein in diesem Zusammenhang bekanntes t. order with variable coefficients. A solution of this equation is

Η		
1	Lösungsansatz	Die Gleichung wird deshalb mit einer direkten Differenzenapproximation gelöst
'	solution for approach	The equation is to be solved by the direct difference method.
2	Für / for $\xi = \xi_i$ gilt	$\bar{M}_{M}(\xi) = \bar{M}_{M}(\xi_{i})$
3		$\bar{M}'_{M}(\xi = \xi_{i}) = \left(\bar{M}_{M}(\xi_{i+1}) - \bar{M}_{M}(\xi_{i-1})\right) / (2 \cdot \Delta\xi)$
4	Direkte	$\overline{M}'_{M}(\xi = \xi_{i}) = (\overline{M}_{M}(\xi_{i+1}) - \overline{M}_{M}(\xi_{i}))/\Delta\xi$ am Rand
5	Differenzenapproximation	
6	Gleichungen nach Collatz	$\overline{M}''_{M}(\xi = \xi_{i}) = \left(\overline{M}_{M}(\xi_{i-1}) - 2 \cdot \overline{M}_{M}(\xi_{i}) + \overline{M}_{M}(\xi_{i+1})\right) / \Delta \xi^{2}$
7	the direct difference approximating method of Collatz	$\overline{M''}_{M}(\xi = \xi_{i}) = \left(2 \cdot \overline{M}_{M}(\xi_{i}) - 5 \cdot \overline{M}_{M}(\xi_{i+1}) + 4 \cdot \overline{M}_{M}(\xi_{i+2}) - \xi(\xi_{i+3})\right) / \Delta \xi^{2} \text{Rand / at the Border}$
		[7] Collatz: Numerische Behandlung von Differentialgleichungen, Springer-Verlag, Berlin. 1955
8	Numerische Integration Trapezformel Trapezoidal formula	$\int_{\xi_1}^{\xi_2} f(\xi) d\xi = \frac{\Delta\xi}{2} \cdot \left(f(\xi_1) + 2 \cdot \sum_{k=1}^{n-1} (f(\xi_1 + k \cdot \Delta\xi) + f(\xi_2)) \text{ mit } \Delta\xi = \frac{\xi_2 - \xi_1}{n-1} \text{ bzw. } n = 1 + \frac{\xi_2 - \xi_1}{\Delta\xi}$
9		
10	Näherungsverfahren zur Lösung der Differential Gleichung approximation of the solution of the differential equation	Mit diesen Gleichungen kann ein lineares Gleichungssystem auf der Grundlage der <i>o. a.</i> Gleichungen aufgestellt werden, welches mit dem Gaußschen Algorithmus lösbar ist. Der Lösungsansatz führt zu guten Ergebnissen für $\overline{M} = f(\xi)$. $\overline{Q}(\xi)$ und $\overline{Q}'(\xi)$ müssen durch numerische Differentiation ermittelt werden. Da es sich um ein Näherungsverfahren handelt, sind in den Randbereichen geringfügige Abweichungen hinsichtlich des Einlaufens der Lösung für $\overline{M} = f(\xi \to 0)$ und $\overline{M} = f(\xi \to 1)$ festzustellen, die aber erst bei der Ermittlung von $\overline{Q}(x)$ und $\overline{Q}'(x)$ durch numerische Differentiation sichtbar werden. Diese Abweichungen haben nur geringe Auswirkungen auf das Ergebnis. It is possible to make a linear system of equations by using of the a.m. equations particularly for $\overline{M} = f(\xi \to 0)$ and $\overline{M} = f(\xi \to 1)$ may occur, which become noticeable when the equations are differentiated. The deviations have an insignificant influence on the final results.

© Klaus-Jürgen Bladt, Rostock, Germany

Bestimmung der Gewindesteifigkeit -		8 / 15 Estimation of stiffness of the thread	
11	Vergleich / comparison	Moment, Berechnung mit der direkten DifferenzenapproximationMoment, Moment, alter direkten DifferenzenapproximationMoment, Moment, shear force, load distribution of the nut calculated by difference approximationMoment, shear force, load distribution of the nut calculated by developing in a potency seriesMoment, shear force, load distribution of the nut calculated by developing in a potency series	
12		$\begin{array}{c} D \\ \hline E_{B} \\ \hline P(M_{L}) \\ \hline O(0) \\ \hline O(1) \\ \hline \hline O(1) \\ \hline O(1) \hline \hline O(1) \\ \hline O(1) \hline \hline O(1)$	
13			
14	Sonderfall für $\frac{E_M}{E_B} = 1$ Special case	EXAMPLE 1 Auf Grund der Symmetrie von Geometrie und Material ist: $\overline{M}_{Ml}(\frac{E_M}{E_B} = 1) = 0,5$ The following equation is valid due to symmetric and material reasons:	
15	Allgemein $\frac{E_M}{E_B} \neq 1$ General case	Für / for $0.5 \leq \frac{E_M}{E_B} \leq 2.0$ ist / is $\overline{M}_{Ml} \left(\frac{E_M}{E_B}\right) \approx 0.5 + 0.12046404 \cdot ln \left(\frac{E_M}{E_B}\right)$ ermittelt durch Variationsrechnungen / determined by variational calculations	

1			
1	Verformungen / Biegelinie deformation / bending line		
2	Mutter / nut	Biegebeanspruchung / bending load	Schubbeanspruchung / shear force load
3	$\frac{\overline{M}_{M}(\xi) = \frac{M_{M}(\xi)}{F \cdot l}, \overline{w}_{B\sigma}^{"} = \frac{\overline{M}_{B}(\xi)}{(1-\xi)^{3}}$	$w_{M\sigma}''(\xi) = \frac{M_{M}(\xi)}{E_{M} \cdot I_{M}(\xi)} = \frac{12 \cdot F \cdot l}{E_{M} \cdot B \cdot P^{3}} \cdot \frac{\overline{M}_{M}(\xi)}{\xi^{3}} = \frac{12 \cdot F \cdot l}{E_{M} \cdot B \cdot P^{3}} \cdot \overline{w}_{M\sigma}''(\xi)$	
4	$ \bar{Q}_{M} = \frac{Q_{M}(\xi)}{F} \\ \bar{w}'_{M\sigma} = \int \bar{w}''_{M\sigma} d\xi + \bar{C}_{M'\sigma} \\ \bar{w}'_{M\tau}(\xi) = \frac{\bar{Q}_{M}(\xi)}{\xi} $	$\begin{split} w'_{M\sigma}(\xi) &= \int w''_{M\sigma}(\xi) d\xi + C_{M'\sigma} = \frac{12\cdot F \cdot l^2}{E_{M'} U \cdot P^3} \cdot \left\{ \int \frac{\bar{M}_M(\xi)}{\xi^3} d\xi + \bar{C}_{M'\sigma} \right\} \\ w'_{M\sigma}(\xi = 1) &= \frac{12\cdot F \cdot l^2}{E_{M'} B \cdot P^3} \cdot \left\{ \int_0^1 \frac{\bar{M}_M(\xi)}{\xi^3} d\xi + \bar{C}_{M'\sigma} \right\} = 0 \\ \bar{C}_{M'\sigma} &= -\int_0^1 \frac{\bar{M}_M(\xi)}{\xi^3} d\xi \end{split}$	$w'_{M\tau}(\xi) = \frac{Q_M(\xi)}{c \cdot E \cdot A_M(\xi)}$ $w'_{M\tau}(\xi) = \frac{F}{c \cdot E_M \cdot B \cdot P} \cdot \frac{\bar{Q}_M(\xi)}{\xi}$
5	$\overline{w}_{M\sigma}(\xi) = \{\int \overline{w}'_{M\sigma} d\xi + \overline{C}_{M\sigma}\}$	$w_{M\sigma}(\xi) = \frac{12\cdot F \cdot l^3}{E_M \cdot B \cdot P^3} \cdot \underbrace{\{\int \overline{w}'_{M\sigma} d\xi + \overline{C}_{M\sigma}\}}_{\overline{w}_{M\sigma}(\xi)}$ $w_{M\sigma}(\xi = 1) = \int_0^1 \overline{w}'_{M\sigma}(\xi) d\xi + \overline{C}_{M\sigma} = 0$ $\overline{C}_{M\sigma} = -\int_0^1 \overline{w}'_{M\sigma}(\xi) d\xi = -\overline{w}_{M\sigma}(\xi = 0)$	$w_{M\tau}(\xi) = \frac{F \cdot l}{c \cdot E_M \cdot B \cdot P} \cdot \underbrace{\left\{ \int \frac{\bar{Q}_M(\xi)}{\xi} d\xi + \bar{C}_{Q\tau} \right\}}_{\overline{W}_M \tau(\xi)}$ $w_{M\tau}(\xi = 1) = + \bar{C}_{Q\tau} = 0$ $\bar{C}_{M\tau} = -\int_0^1 \frac{\bar{Q}_M(\xi)}{\xi} d\xi = -w_{M\tau}(\xi = 0)$
6		$w_{M}(\xi) = \left\{ \frac{1^{2\cdot F \cdot l^{3}}}{E_{M'}B \cdot p^{3}} \cdot \overline{w}_{M\sigma}(\xi) + \frac{F \cdot l}{c \cdot E_{M'}B \cdot P} \cdot \overline{w}_{M\tau}(\xi) \right\} = \frac{1^{2\cdot F \cdot l^{3}}}{E_{M'}B \cdot p^{3}} \cdot \left\{ \overline{w}_{M\sigma}(\xi) + \frac{p^{2}}{1^{2\cdot c \cdot l^{2}}} \cdot \overline{w}_{M\tau}(\xi) \right\}$	
7	Schraube / bolt	Analoge Verfahrensweise wie für die Mutter / ana	logous procedure as for the nut
8	$\overline{E} = \frac{E_M}{E_B}, E_B = \frac{E_M}{\overline{E}}, E_B = \overline{E} \cdot E_M$ $\overline{M}_B(\xi) = \frac{M_B(\xi)}{F \cdot l}, \overline{W}_{B\sigma}'' = \frac{\overline{M}_B(\xi)}{(1-\xi)^3}$	$W_{B\sigma}''(\xi) = \frac{M_B(x)}{E_{B'}I_B(x)} = \frac{12 \cdot F \cdot I}{E_{B'}B \cdot P^3} \cdot \frac{\bar{M}_B(\xi)}{(1-\xi)^3} = \frac{12F \cdot I}{E_{M'}B \cdot P^3} \cdot \frac{\bar{E}}{E} \cdot \left\{ \frac{\bar{M}_B(\xi)}{(1-\xi)^3} \right\}$	
9	$\begin{split} \bar{Q}_{BV} &= \frac{Q_B(\xi)}{F} \\ \bar{w}'_{B\sigma} &= \int \bar{w}''_{B\sigma} d\xi + \bar{C}_{B'\sigma} \\ \bar{w}'_{B\tau}(\xi) &= \frac{\bar{Q}_B(\xi)}{1-\xi} \end{split}$	$\begin{split} w'_{B\sigma}(\xi) &= \int w''_{M\sigma}(\xi) d\xi + C_{M'\sigma} = \frac{12\cdot F\cdot l^2}{E_B \cdot U \cdot P^2} \cdot \overline{E} \cdot \left\{ \int \frac{\overline{M}_B(\xi)}{(1-\xi)^3} d\xi + \overline{C}_{B'_{\sigma}} \right\} \\ w'_{B\sigma}(\xi = 0) &= \frac{12\cdot F\cdot l^2}{E_M \cdot B \cdot P^3} \cdot \overline{E} \cdot \left\{ \int_0^1 \frac{\overline{M}_B(\xi)}{(1-\xi)^3} d\xi + \overline{C}_{B'_{\sigma}} \right\} = 0 \\ \overline{C}_{B'_{\sigma}} &= -\int_0^1 \frac{\overline{M}_B(\xi)}{(1-\xi)^3} d\xi \end{split}$	$w'_{B\tau}(\xi) = \frac{Q_B(\xi)}{g \cdot E_B \cdot k \cdot A_B(\xi)}$ $w'_{B\tau}(\xi) = \frac{F}{c \cdot E_M \cdot B \cdot P} \cdot \vec{E} \cdot \frac{\bar{Q}_B(\xi)}{1 - \xi}$ $\vec{w}'_{B\tau}(\xi) = \vec{E} \cdot w'_{B\tau}(\xi) = \vec{E} \cdot \frac{\bar{Q}_B(\xi)}{1 - \xi}$
10		$\begin{split} w_{B\sigma}(\xi) &= \frac{1^{2\cdot F \cdot l^3}}{E_{M'} \cdot B \cdot P^3} \cdot \frac{\overline{E} \cdot \{\int \overline{w}_{B\sigma}' d\xi + \overline{C}_{B\sigma}\}}{\overline{w}_{B\sigma}(\xi)} = \frac{1^{2\cdot F \cdot l^3}}{E_{M'} \cdot B \cdot P^3} \cdot \frac{1}{\overline{E}} \cdot \overline{w}_{B\sigma}\\ \overline{w}_{B\sigma}(\xi) &= 0) = \int_0^0 \overline{w}_{B\sigma}'(\xi) d\xi + \overline{C}_{B\sigma} = 0\\ \overline{C}_{B\sigma} &= 0 \end{split}$	$\begin{split} w_{B\tau}(\xi) &= \frac{F \cdot l}{c \cdot E_{M'} \cdot B \cdot P} \cdot \frac{\vec{E} \cdot \{\int \vec{w}_{B\tau}(\xi) d\xi + \vec{C}_{B\tau}\}}{\vec{w}_{B\tau}(\xi)} = \frac{F \cdot l}{c \cdot E_{M'} \cdot B \cdot P} \cdot \vec{w}_{B\tau}(\xi) \\ \vec{w}_{B\tau}(\xi = 1) &= \int_0^1 \vec{w}_{B\tau} d\xi + \vec{C}_{B\tau} = 0 \\ \vec{C}_{B\tau} &= -\int_0^1 \vec{w}'_{B\tau} d\xi \end{split}$
11			
12		Schraube / bolt	Mutter / nut
13	$\overline{E} = \frac{E_M}{E_B}$	$w_{\scriptscriptstyle B}(\xi) = \frac{12\cdot \bar{r}\cdot \bar{t}^3}{\bar{E}_{M^{\prime B}\cdot P^3}} \cdot \overline{E} \left\{ \overline{w}_{\scriptscriptstyle B\sigma}(\xi) + \frac{P^2}{12\cdot c\cdot l^2} \cdot \overline{w}_{\scriptscriptstyle MT}(\xi) \right\}$	$w_{M}(\xi) = \frac{1}{\varepsilon_{M}} \cdot \frac{12 \cdot \varepsilon \cdot t^{2}}{B \cdot P^{3}} \cdot \left\{ \overline{w}_{M\sigma}(\xi) + \frac{P^{2}}{12 \cdot \varepsilon \cdot t^{2}} \cdot \overline{w}_{M\tau}(\xi) \right\}$
14		$w_B(\xi) \cdot \frac{E_{M} \cdot B \cdot P^3}{12 \cdot F \cdot l^3} = \overline{\underline{E}} \cdot \left\{ \overline{w}_{B\sigma}(\xi) + \frac{P^2}{12 \cdot C \cdot l^2} \cdot \overline{w}_{M\tau}(\xi) \right\}$	$w_{M}(\xi) \cdot \frac{E_{M} \cdot B \cdot P^{3}}{12 \cdot F \cdot l^{3}} = \left\{ \overline{w}_{M\sigma}(\xi) + \frac{P^{2}}{12 \cdot C \cdot l^{2}} \cdot \overline{w}_{M\tau}(\xi) \right\}$
18			

J 1

Steifigkeit des Gewindes Die Steifigkeit ist definiert durch die Verschiebung der Kraft an ihrem Angriffspunkt ξ_F für das

© Klaus-Jürgen Bladt, Rostock, Germany http://www.jbladt.de/technik/masching machine-elements/

Bestimmung der Gewindesteifigkeit - 9 / 15 Estimation of stiffness of the				
	Stiffness of thread Schrauben- und Mutterngewinde. Der Kraftangriffspunkt ξ_F befindet sich auf Grund des			
		spiegelbildlichen Streckenlastverlaufs $O'(\varepsilon)$ für Mutter und Schraube an gleicher Stelle.		
		The stiffness of thread is defined by the offset of the force at its point of application for the thread of bolt and nut. The point of		
		force application is located at the same point for the thread of bolt and nut.		
2	Kraftangriffspunkt			
2	Point of force application	$\xi_F = 1 - \frac{m}{F \cdot l} = 1 - M_{Ml}$		
2	Steifigkeit	$r = \frac{F}{F}$	$c = \frac{F}{F}$	
3	stiffness	$w_{GB} = w_B(\xi = \xi_F) $	$w_{GM} = \overline{ w_M(\xi = \xi_F) }$	
	Verformung	$12 \cdot F \cdot l^3$	$(\zeta) = \frac{12 \cdot F \cdot l^3}{2} = (\zeta)$	
4	deformation	$W_B(\xi_F) = \frac{1}{E_B \cdot B \cdot P^3} \cdot W_B(\xi_F)$	$w_M(\zeta_F) = \frac{1}{E_M \cdot B \cdot P^3} \cdot w_M(\zeta_F)$	
_	E_M	$1 1 1 12 \cdot l^3 (1 l = (2 \times l 1))$	$= (z_{2}) \qquad 12 \cdot l^{3} \qquad (z_{2}) \qquad = (z_{2}) \qquad (z_{2})$	
5	$E_B = \overline{\overline{E}}$	$\frac{1}{\mathbb{C}_G} = \frac{1}{\mathbb{C}_{GM}} + \frac{1}{\mathbb{C}_{GB}} = \frac{1}{B \cdot P^3} \cdot \left(\frac{1}{E_M} \cdot \overline{w}_M(\xi_F) + \frac{1}{E_B} \cdot \overline{w}_B(\xi_F) \right) = \frac{1}{E_M \cdot B \cdot P^3} \cdot \left(\overline{w}_M(\xi_F) + \overline{E} \cdot \overline{w}_B(\xi_F) \right)$		
6		$E_{M} - \frac{E_{M} \cdot B \cdot P^{3}}{E_{M} \cdot B \cdot P^{3}}$	1	
0		$\mathbb{C}_{G} = \frac{12 \cdot l^{3}}{12 \cdot l^{3}}$	$ M(\xi_F) + \overline{E} \cdot \overline{W}_B(\xi_F) $	
7	Matriaghag Cowindo	d_2		
8	Metrisches Gewinde	$\mathbb{C}_{C} = \frac{E_{M} \cdot \pi \cdot \frac{\pi}{2}}{2} \cdot \frac{1}{2}$	mit $\frac{l}{d} = cos30^\circ$, $B \approx \pi \cdot \frac{d_2}{d}$	
	1 B	$\frac{12 \cdot \cos^3 30^\circ}{12 \cdot \cos^3 30^\circ} \overline{w}_M(\xi_F) + \overline{E} \cdot \overline{w}_B(\xi_F) $	P 2	
9	$\frac{1}{p} = \cos \frac{p}{2}$, $U \approx \pi \cdot d_2$	$\mathbb{C}_{c} = 0.2016 \cdot \frac{E_{M} \cdot d_{2}}{2}$	$= 0.2016 \cdot \frac{E_B \cdot E_M \cdot d_2}{1 - E_B \cdot E_M \cdot d_2}$	
Ũ		$ \overline{w}_M(\xi_F) + E \cdot \overline{w}_B(\xi_F) $	$E_B \cdot \overline{w}_M(\xi_F) + E_M \cdot \overline{w}_B(\xi_F) $	
	Metrisches ISO-			
10	Grobgewinde:	$\mathbb{C}_{C} \approx 0.181 \cdot \frac{E_{B} \cdot E_{M} \cdot d}{2}$		
	$d_2 \approx 0.9 \cdot d$		$B \cdot \overline{w}_M(\xi_F) + E_M \cdot \overline{w}_B(\xi_F) $	
	metric coarse thread	Die Frenchmisse von Die geliefende von eheuren er eine	n felmen de er	
		Die Ergebnisse von Biegelinienberechnungen zeige	n folgendes:	
		Es entstent wie erwartet eine Deformation, die ents	brechend den Voraussetzungen zu einem	
		Flachenkontakt fuhrt. Folgende Annahmen für die B	erechnung sind hierbei erfullt:	
		The results of the calculations are showing the following:	and the fellowing accurations of the colordation are not	
		As expected, deformation occurs and leads to surface contact. H	ereby, the following assumptions of the calculation are met.	
		$W_B(\xi = 0) = -$	$W_M(\zeta = 1) = 0$	
		$W_B(\xi=1)=$	$-W_M(\xi=0)$	
	Defermetionels are shown as a	$ w_{Bmax} = w_B(\xi = 1) =$	$= W_M(\xi = 0) = W_{Mmax} $	
	Deformationsberechnungen			
11	findings of the calculations of the	Ergebnis von Berechnungen: Die Verschiebung der	Kraft für die Berechnung der Gewindesteifigkeit ist	
	deformation	Result of calculations: The offset of the force fo	r the calculation of the thread stiffness:	
		$\frac{w_B(\xi=1)}{2} = w_B(\xi_r) = -$	$-w_M(\xi_r) = -\frac{w_M(\xi=0)}{2},$	
		So dass / resulting in	2	
1			$E \to D \to D^3$ 1	
		$\mathbb{C}_G = \frac{E_M \cdot B \cdot P}{3} \cdot \frac{1}{1 - 1}$	$= \frac{E_M \cdot D \cdot r}{1} \cdot \frac{1}{1 + \overline{D}}$	
		$12 \cdot l^3 W_M(\xi_F) \cdot (1+I)$	$(1 + E) = 12 \cdot l^3 = W_B(\zeta_F) \cdot (1 + E)$	
		und / and $\mathbb{C}_G \approx 0, 181 \cdot \frac{E_B \cdot E_M \cdot a}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$181 \cdot \frac{a}{1 - \frac{b}{1 - \frac{b}$	
		$ W_M(\zeta_F) \cdot (E_B + E_M)$	$ w_B(\varsigma_F) (E_B + E_M)$	

http://www.ib -machine-elements/

М				
IVI	Augustus			
	Auswertung von	Dimensionslose Deformation w *(EM/EB) und Näherungsfunktion		
	Ergebnissen	W*(EM/EB) Dimensionless deformation and approximate funktion		
	evaluation of the results			
		0,40 • • • • • • • • • • • • • • • • • • •		
		— — — Pot.(w* aus der Berechnung)		
		0,30		
		0.20		
		$y = 0.2510x^{-0.4999}$		
		$P^2 = 0.0000$		
		0,0 1,0 2,0 EM/EB ^{3,0}		
1		Die dimensionslose Steifigkeit kann durch eine Näherungsfunktion wiedergegeben werden. Diese		
		Näherung basiert auf den vorherigen 5 Berechnungsbeispielen und ist im Kern eine Funktion der		
		dimensionslosen Verformung $\overline{w}_{M}(\xi_{F}) = \overline{w}_{R}(\xi_{F}) = \overline{w}(\xi_{F})$.		
		Die dimensionslose Verformung kann genähert werden durch die Hyperbel-Gleichung:		
		The dimensionless stiffness can be represented by an approximate function. This approximation is based on the previous		
		calculation five examples and is essentially a function of the dimensionless deformation $\overline{w}_M(\xi_F) = \overline{w}_B(\xi_F) = \overline{w}(\xi_F)$. The		
		dimensionless deformation can be approximated by the hyperbola equation:		
		$\overline{w}(\xi_{-}) \approx 0.25 \cdot \left(\frac{E_M}{2}\right)^{-\frac{1}{2}} - 0.25 \cdot \overline{F}^{-\frac{1}{2}}$		
		$W(\zeta_F) \approx 0.25 \cdot \left(\frac{E_B}{E_B}\right) = 0.25 \cdot E^{-2}$		
		Nachvollziehbar ist $\mathbb{C}_{G}\left(\frac{E_{M}}{R}\right) = \mathbb{C}_{G}\left(\frac{E_{B}}{R}\right) = \mathbb{C}_{G}\left(\frac{E_{max}}{R}\right) = \mathbb{C}_{G}\left(\frac{E_{min}}{R}\right)$		
		$-G(E_B)$ $-G(E_M)$ $-G(E_{min})$ $-G(E_{max})$		
		Die weitere Berechnung folgt der Variante / the following calculation is made by the variant		
		$\int \left(\frac{E_{max}}{E_{max}}\right) = \frac{E_{max}}{E_{max}} = -MAX(E_{max}) = -MIN(E_{max})$		
		$\mathbb{L}_{G}\left(\frac{1}{E_{min}}\right)$ mill/with $E_{max} = \frac{1}{E_{min}}$, $E_{max} = MAX(E_B, E_M)$, $E_{min} = MIN(E_B, E_M)$		
		Damit ergibt sich die Gewindesteifigkeit zu / the stiffness of thread is therefore		
		$E_{B'} = 0.101$, $E_{B'} E_{M'} d = 0.101$, $E_{min'} E_{max'} d = 0.101$, 1 , 1		
		$\mathbb{U}_{G} \approx 0, 181 \cdot \frac{1}{ \overline{w}_{B}(\xi_{F}) \cdot (E_{B} + E_{M})} = 0, 181 \cdot \frac{1}{ \overline{w}_{M}(\xi_{F}) \cdot (E_{min} + E_{max})} = 0, 181 \cdot \frac{1}{ \overline{w}_{B}(\xi_{F}, \overline{E}_{max}) } \cdot \frac{1}{1 + \overline{E}_{max}} \cdot E_{max} \cdot d$		
		$\mathbb{C}_{G} \approx 0,181 \cdot \frac{1}{ \overline{w}(\xi_{F},\overline{E}_{max}) } \cdot \frac{1}{1+\overline{E}_{max}} \cdot E_{max} \cdot d = 0,181 \cdot \frac{1}{1+\overline{E}_{max}} \cdot 4 \cdot \overline{E}_{max}^{1/2} \cdot E_{max} \cdot d = 0,724 \cdot \frac{1}{1+\overline{E}_{max}} \cdot \overline{E}_{max}^{1/2} \cdot E_{max} \cdot d$		
		Into: Die in der vorangegangenen Fassung verwendete Näherungsgleichung entspricht der o.g. Gleichung: The approximate equation used in the previous version corresponds to the above-mentioned equation:		
		The approximate equation used in the previous version corresponds to the above-mentioned equation: $\mathbb{C}_{c} \approx d \cdot MAX(E_{B}, E_{M}) \cdot \left[0.362 - 0.24749 \cdot \left(\frac{E_{M} - E_{B}}{2}\right)^{2} + 0.43734 \cdot \left(\frac{E_{M} - E_{B}}{2}\right)^{4}\right]$		
		1. Um die Auswertung von Ergebnissen übersichtlich zu halten, wurde mit unterschiedlichen E-		
	Fazit	Modulen bzw. G-Modulen aber mit einer konstanten, mittleren Poisson-Zahl $\nu = 0.3$ gerechnet.		
	conclusion	Die Ergebnisse werden von dieser Annahme nur geringfügig beeinflusst.		
		2. Es zeigt sich, dass das in der eigenen Berechnung erreichte Ergebnis $\mathbb{C}_{G}\left[\frac{N}{mm}\right] = 0,362 \cdot E \cdot d$ für		
		$\overline{F} = 1$ circa dem Wert des in [2] angegebenen Wert $\mathbb{C}_{c} \left[\frac{N}{2} \right] = 0.34 \cdot F \cdot d$ entspricht		
1		2 Der Kreftengriffenunkt ξ ist obhängig vom \overline{E} Medukoshältnin		
		5. Der Kranangninspunkt ξ_F ist abnangig vom <i>E</i> -wodulvernaltnis.		
2		4. Fur die Kentwerte der <i>E</i> -wodulvernalmisse ergeben sich logischerweise und aufgrund der Annahmen gleiche Steifigkeiten: $\mathcal{C}_{-}(\overline{E}) = -\mathcal{C}_{-}(1/\overline{E})$		
-		Annanmen gierche Steinigkeiten. $\mathbb{U}_{G}(E) = \mathbb{U}_{G}(1/E)$		
1		$z.B.: \mathbb{C}_G \left(\overline{E} = \frac{z}{3} \right) = \mathbb{C}_G \left(\overline{E} = \frac{3}{2} \right)$		
		5. Die Verschiebung (Verformung) der Gewindeflanken für ξ_F ist halb (1/2) so groß wie an den		
		Gewindespitzen und gleich für beide Gewindeflanken: $w_B(\xi_F) = w_M(\xi_F)$		
1		6. Eine Abschätzung/Einschätzung der Steifigkeit kann durch die Verwendung der Extrapolation		
		der dimensionslosen Deformation auch für größere E-Modul-Relationen erreicht werden.		
		7. Für $0.5 < \overline{E} < 2.0$ ist eine Näherung mit $\mathbb{C}_G \approx 0.72 \cdot \frac{E_M \cdot E_B}{R} \cdot d$ ausreichend.		
		$E_M + E_B$		

© Klaus-Jürgen Bladt, Rostock, Germany http://www.jbladt.de/technik/maschinenelemente-machine-elements/

٩

Anhang 1 / Appendix ↓ ↓ ↓ ↓ ↓

0	Vereinfachtes Modell zur Berechnung der Gewindesteifigkeit / Simplified model for calculation of the stiffness of a thread					
	 Problem und Zielstellung / problem and goal Kontrolle der vorher stehenden Berechnung mit einer einfachen Berechnung, ob die vorangegangene Berechnung plausibel ist und glaubwürdige Ergebnisse liefert und umgekehrt. 					
1	 Nachweis, dass auch einfache Berechnungen zu brauchbaren Ergebnissen führen. Aber dazu man muss erst wissen, 					
	was brauchbar ist.					
	O Check of the a. m. calculation with a simplified calculation, whether the a.m. calculation is plausible and leads to credible results and vice versa. Versa.					
	Annahmen / assumptions					
	\circ Balken mit linear veränderlichem Höhenverlauf über die Länge l ur	nd die Breite B, die dem halben Gewindeumfang				
2	entspricht.					
	 Beam with linearly variable height along the length <i>l</i> und the width, which 	ch corresponds to the half of circumference.				
	 Parabolical load distribution along the length of beam. 					
3	Belastungsverteilung / load distribution					
	$q(x) = q_0 \cdot (a \cdot x^2 + b \cdot x + c)$ $q(x = 0) = q_0 \cdot (a \cdot x^2 + b \cdot x + c) = 0 \Rightarrow c = 0$					
	$q(x = l/2) = q_0 \cdot \left(a \cdot \frac{l^2}{4} + b \cdot \frac{l}{2}\right) = q_0 + q_0 + q_0 + q_0 + q_0 + b \cdot l = 0 + \frac{1}{2}$	P				
	$q_0 \cdot \left(a \cdot \frac{l^2}{4} + b \cdot \frac{l}{4}\right) = 0 \qquad -$					
	$q_0 \cdot \left(b \cdot \frac{1}{2} - b \cdot \frac{1}{4}\right) = q_0 \Rightarrow b = \frac{1}{l}$					
4	$\begin{aligned} q_0 \cdot (u \cdot t + 4) &= 0 & \neq u = -\frac{1}{t^2} \\ a(x) &= 4 \cdot a_0 \cdot (\frac{x}{t} - \frac{x^2}{t}) = 4 \cdot a_0 \cdot (\xi - \xi^2) & \Rightarrow \xi = \frac{x}{t} dx = 1 \cdot d\xi \end{aligned}$					
	$F = \int_{0}^{l} q(x) dx = 4 \cdot q_{0} \cdot \int_{0}^{l} \left(\frac{x}{x} - \frac{x^{2}}{x^{2}}\right) dx = 4 \cdot q_{0} \cdot l \cdot \int_{0}^{1} \left(\xi - \xi^{2}\right) d\xi$					
	$F = 4 \cdot q_0 \cdot l \left(\frac{\xi^2}{2} - \frac{\xi^3}{2}\right)^1 = \frac{2}{2} \cdot q_0 \cdot l \Rightarrow q_0 = \frac{3}{2} \cdot \frac{F}{I}$	1/2				
		<u>×</u>				
	$q(\xi) = 6 \cdot \frac{F}{I} \cdot (\xi - \xi^2) = -Q'(\xi)$	Dimensionslos / dimensionless $q(\xi) + l$				
	l	$q^*(\xi) = \frac{q(\xi)^{-1}}{6 \cdot F} = (\xi - \xi^2) = -Q^{*'}(\xi)$				
	$Q(\xi) = -6 \cdot F \cdot \int_{\xi_3} (\xi^2 - \xi) d\xi$	Dimonsionalos / dimensionless				
5	$Q(\xi) = -6 \cdot F \cdot \left(\frac{\xi^2}{3} - \frac{\xi^2}{2} + C_Q\right)$	$M^*(\xi) = \frac{M(\xi)}{2} = \int (2 \cdot \xi^3 - 3 \cdot \xi^2 + 1) d\xi$				
	$Q(\xi = 1) = -6 \cdot F \cdot \left(\frac{\xi^3}{3} - \frac{\xi^2}{2} + C_Q\right) = 0 \qquad \Rightarrow C_Q = +\frac{1}{6}$	F_{-1}				
	$\frac{Q(\xi) = -F \cdot (2 \cdot \xi^3 - 3 \cdot \xi^2 + 1)}{M(\xi) = -F \cdot (2 \cdot \xi^3 - 2 \cdot \xi^2 + 1)d\xi}$					
	$M(\xi) = -F \cdot (\xi - \xi^3 + \frac{1}{2}, \xi^4 + \zeta)$					
6	$m(\zeta - 1) = F \cdot \left(\zeta - \zeta + \frac{1}{2} \cdot \zeta + C_M\right)$	Dimensionslos / dimensionless				
	$m(\varsigma = 1) = -r \cdot \iota \cdot (\varsigma - \varsigma^{\circ} + \frac{1}{2} \cdot \varsigma^{\circ} + c_M) = 0 \Rightarrow \ c_M = -\frac{1}{2}$					
<u> </u>	$M(\xi) = -F \cdot l \cdot \left(\xi - \xi^3 + \frac{1}{2} \cdot \xi^4 - \frac{1}{2}\right)$					
7	Deformation durch Biegung / Biegespannung σ / deformation due to bending stress					
8	$w_{\sigma}''(\xi) = -\frac{w_{(\xi)}}{E \cdot l(\xi)} = \frac{12 \cdot 1}{E \cdot B \cdot P^3} \cdot \frac{(1 - \xi)^2}{(1 - \xi)^3} = -\frac{12 \cdot 1}{E \cdot B \cdot P^3} \cdot \frac{14 \xi}{2} = -\frac{12 \cdot 1}{E \cdot b \cdot P^3} \cdot (1 + \xi)$	$\frac{(1+\xi)(1-\xi)^{3}}{2\cdot(1-\xi)^{3}} = \frac{1-3(\xi+3)(\xi-\xi)(\xi+3)(\xi-\xi)}{2\cdot(1-\xi)^{3}} = -\frac{(\xi+3)(\xi-\xi)(\xi-\xi)}{(1-\xi)^{3}}$				
9	$w_{\sigma}(\varsigma) = -\frac{1}{E \cdot B \cdot P^3} \int (1+\varsigma) u\varsigma = -\frac{1}{E \cdot P^3} \cdot \left(\varsigma + \frac{1}{2} \cdot \varsigma^2 + C_{w_{\sigma}}\right)$ $w_{\sigma}'(\xi=0) = -\frac{6 \cdot F \cdot l^2}{E \cdot P^3} \cdot \left(\xi + \frac{1}{2} \cdot \xi^2 + C_{w_{\sigma}}\right) = 0 \Rightarrow C_{w_{\sigma}} = 0$					
	$w'_{\sigma}(\xi) = -\frac{3 \cdot F \cdot l^2}{F \cdot R \cdot P^3} \cdot (2 \cdot \xi + \xi^2)$					
	$w_{\sigma}(\xi) = -\frac{3\cdot F \cdot l^{3}}{E \cdot B \cdot P^{3}} \cdot \int (2 \cdot \xi + \xi^{2}) d\xi = \frac{3 \cdot F}{E \cdot P^{3}} \cdot \left(\xi^{2} + \frac{1}{3} \cdot \xi^{3} + C_{W\sigma}\right)$					
	$w_{\sigma}(\xi=0) = -\frac{3 \cdot F \cdot l^3}{E \cdot B \cdot P^3} \cdot \left(\xi^2 + \frac{1}{3} \cdot \xi^3 + C_{W\sigma}\right) = 0 \qquad \Rightarrow C_{W\sigma} = 0$	$\frac{c}{P} = \frac{1}{2 \cdot \tan \frac{\beta}{2}}$, für metrisches Gewinde: $\frac{l}{P} = \cos 30^{\circ}$				
10	$w_{\sigma}(\xi) = -\frac{F \cdot U^2}{E \cdot B \cdot P^3} \cdot (3 \cdot \xi^2 + \xi^3)$	$B = \pi \cdot d_2/2$, $\frac{1}{2} = \frac{1}{2\pi - k^2} = \cos 30^\circ$, $g = 1/2.6$, $k = 5/6$, $d_2 = 0.9 \cdot d$				
	$W_{\sigma}\left(\xi = \frac{1}{2}\right) = -\frac{F \cdot l^3}{E \cdot B \cdot P^3} \cdot \left(\frac{3}{4} + \frac{1}{8}\right) = -\frac{7}{8} \cdot \frac{F \cdot l^2}{F \cdot B \cdot P^3}$	Dimensionslos / dimensionless				
	$w_{\sigma}\left(\xi = \frac{1}{2}\right) = -\frac{7}{8} \cdot \frac{\cos^3 30^{\circ}}{\pi} \frac{F}{E \cdot d_{\sigma}/2} = -0.1813 \cdot \frac{F}{E \cdot d_{\sigma}/2} = -0.2014 \cdot \frac{F}{E \cdot d_{\sigma}/2}$	$w_{\sigma}^{*}(\xi) = \frac{E \cdot d}{F} \cdot w_{\sigma}(\xi) = -\frac{1}{\pi} \cdot \frac{l^{3}}{P^{3}} \cdot (3 \cdot \xi^{2} + \xi^{3})$				
11	Deformation durch Schubspannung τ / deformation due to the shear stress					

© Klaus-Jürgen Bladt, Rostock, Germany http://www.jbladt.de/technik/maschinenelemente-machine-elements/

© Klaus-Jürgen Bladt, Rostock, Germany http://www.ibladt.de/technik/maschinenelemente-machine-element

15 / 15 Bestimmung der Gewindesteifigkeit -Estimation of stiffness of the thread $\frac{3-6\cdot z+3\cdot z^2-2+6\cdot z-6\cdot z^2+2\cdot z^3-1}{2} = \frac{-3z^2+2z^3}{2} = -3\cdot z+2\cdot z^2$ $\frac{(3\cdot\xi^2 - 2\cdot\xi^3 - 1)}{2} = \frac{3(1-z) - 2\cdot(1-z)^2 - 1}{2} = \frac{3(1-z) - 2\cdot(1-z)^2 - 1}{2}$ 27 $(1-\xi)$ z z 28 $+2 = 2 \cdot \xi^2$ $3+3\cdot\xi$ $+2 \cdot \xi^{2}$ $4 \cdot \xi$ - 1 $3 \cdot z +$ ξ

