Vergleich von freiem und ummanteltem Propeller (Schubanteilziffer) Comparison of free running propeller and covered propeller

Annahmen: In der Propellerichenen wird Energie zugeführt Durch diese Energiezuführ wird ständig Füssigkeit angessaugt und in einem den Propeller umbillenden, freien Stahl beschleunigt Der Propeller ist idealisiert durch eine Schebe (Fügetahl III-vo) Vernachlässignag der Drehung des Propellers Ewird nur die schuberzugunde, axale Komponente der Strömung betrachtet Keiner Richowinkungen der Sahzbeugen des Ansale Komponente der Strömung betrachtet Keiner Richowinkungen der Brahzuges Robinspartes, inhompressible Strömung Norfinabläsgesetz und frungbastar gelaten Vernachlässignag der Drehung des Propellers Ewird nur die schuberzugunde, axale Komponente der Strömung betrachtet Keiner Richowinkungen der Sahzbeugen der Sahzbeugen der Strömung betrachtet Keiner Richowinkungen der Sahzbeugen der Strömung Norfinabläsgesetz und frungbastar gelaten Der Volumenstorn des erzeuglen Strahls ist konstant Der Volumenstorn des erzeuglen Strahls ist konstant Der Sollwarsen und der Propeller (Erwint) Sol. A., Inn ¹ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ² Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit hindrer den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit hindrer den Propeller (Erwint) Sol. A., Inn ³ Strahllücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den Propeller (Erwint) Sol. A., Inn ³ Strahlücher weit vor den	00	Strahl im freien Propeller Strahl im ummantelten Propeller (Rohr)				ler (Rohr)	
- In der Propellerebene wird Energie zugeführt - Durch diese Energiezuthr wird ständig Flüssigkeit angesaugt und in einem den Propeller umhüllenden, freien Straht beschleunigt - Der Propeller ist idealisiert durch eine Scheibe (Flügdzahl → ∞) 2 - Vermachlässigung der Drehung des Propellers - Es wird nur de schüberzeugende, axiale Komponente der Strömung betrachtet - Keine Rückwirkrungen des Prizeuges - Reibungsfreig. inkompressible Strömung - Konfinutätsgesetz und impulssatz gelten - Der Volumenstrom des erzeugten Strahls ist konstant - Der Volumenstrom des erzeugten Strahls ist konstant - Der Spalt zwischene Rohr (Mantel) und Propeller ist vermachlässigher - Der Volumenstrom des erzeugten Strahls ist konstant - Der Spalt zwischene Rohr (Mantel) und Propeller ist vermachlässigher - Nach in vermachlässigher - Der Volumenstrom des erzeugten Strahls ist konstant - Der Spalt zwischene Rohr (Mantel) und Propeller ist vermachlässigher 33 - Formelzeichen - A. Im² Strahlfläche weit vor dem Propeller (Einhitt) - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller (Einhitt) - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche weit hinter dem Propeller - Vergeich - A. Im² Strahlfläche wei	01	Ve pe	Ds Vs Psa Psa Ve A	Begrenzung der vom Propeller erfassten Strömung Vo. A pse vs psa Ve A ye A			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	 In der Propellerebene wird Energie zugeführt Durch diese Energiezufuhr wird ständig Flüssigkeit angesaugt und in einem den Propeller umhüllenden, freien Strahl beschleunigt Der Propeller ist idealisiert durch eine Scheibe (Flügelzahl ⇒∞) Vernachlässigung der Drehung des Propellers Es wird nur die schuberzeugende, axiale Komponente der Strömung betrachtet Keine Rückwirkungen des Fahrzeuges Reibungsfreie, inkompressible Strömung Kontinuitätsgesetz und Impulssatz gelten 		In der Propellerebene wird Energie zugeführt Durch diese Energiezufuhr wird ständig Flüssigkeit angesaugt und in einem den Propeller umhüllenden Rohr / Mantel beschleunigt Der Propeller ist idealisiert durch eine Scheibe (Flügelzahl ⇒∞) Vernachlässigung der Drehung des Propellers Es wird nur die schuberzeugende, axiale Komponente der Strömung betrachtet Keine Rückwirkungen des Fahrzeuges Reibungsfreie, inkompressible Strömung Kontinuitätsgesetz und Impulssatz gelten Der Volumenstrom des erzeugten Strahls ist konstant Der Spalt zwischen Rohr (Mantel)und Propeller ist			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I	T		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4 [m ²]	Rohrquerschnittsfläche,		
$ \begin{array}{ c c c c }\hline 07 & \text{Vergleich} & A_e \geq A_s \geq A_a \\ \hline 08 & D_e \ m \ & \text{Strahldurchmesser in der Propellerebene} \\ \hline 09 & T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des freien Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des irreinen Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des ummantelten Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des ummantelten Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des ummantelten Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des ummantelten Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Schubkraft des ummantelten Propellers} \\ \hline 10 & V \ T \ N = \frac{kg \cdot m}{s^2} \ & \text{Strahlgeschwindigkeit weit vor dem Propeller} \\ \hline 11 & V_e \ I \ N = \frac{kg \cdot m}{s^2} \ & \text{Strahlgeschwindigkeit in der Propellerebene} \\ \hline 12 & V_s \ I \ N = \frac{kg \cdot m}{s^2} \ & \text{Strahlgeschwindigkeit weit hinter dem Propeller} \\ \hline 13 & V_e \ I \ N_e \ M_e \ M_e$				$A_S[m^-]$	Strahlfläche in der Propelle	rebene	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		$A_s = A_a$		
$ \begin{array}{ c c c c c }\hline 0.9 & T[N=\frac{kg\cdot m}{s^2}] & Schubkraft des freien Propellers \\\hline 10 & V[m^3/s] & Volumenstrom in Strahl & V_{\underline{k}}[m^3] & Volumenstrom durch das Rohr \\\hline 11 & v_{\underline{k}}[m/s] & Strahlgeschwindigkeit weit vor dem Propeller \\\hline 12 & v_{\underline{k}}[m/s] & Strahlgeschwindigkeit weit vor dem Propeller \\\hline 13 & v_{\underline{k}}[m/s] & Strahlgeschwindigkeit in der Propellerebene & v_{\underline{k}}[m/s] & Geschwindigkeit in der Propellerebene \\\hline 13 & v_{\underline{k}}[m/s] & Strahlgeschwindigkeit weit vor dem Propeller \\\hline 14 & p_{\underline{k}}[m/s] & Strahlgeschwindigkeit in der Propellerebene & v_{\underline{k}}[m/s] & Geschwindigkeit in ther dem Propeller \\\hline 14 & p_{\underline{k}}[m/s] & Geschwindigkeit in ther dem Propeller & v_{\underline{k}}[m/s] & Geschwindigkeit vor dem Rohr & v_{\underline{k}}[m/s] & Geschwindigk$	08		Strahldurchmesser in der Propellerebene	$D_{S}[m]$			
$ \begin{array}{ c c c c c }\hline 10 & V & [m^3/s] & \text{Volumenstrom in Strahl} \\ \hline 11 & v_e & [m/s] & \text{Strahlgeschwindigkeit weit vor dem Propeller} \\ \hline 12 & v_e & [m/s] & \text{Strahlgeschwindigkeit in der Propellerebene} \\ \hline 13 & v_e & [m/s] & \text{Strahlgeschwindigkeit in der Propellerebene} \\ \hline 13 & v_e & [m/s] & \text{Strahlgeschwindigkeit in der Propellerebene} \\ \hline 14 & v_e & [m/s] & \text{Strahlgeschwindigkeit in der Propellerebene} \\ \hline 15 & v_e & [m/s] & \text{Geschwindigkeit in der Propellerebene} \\ \hline 16 & v_e & [m/s] & \text{Geschwindigkeit in der Propellerebene} \\ \hline 17 & v_e & [m/s] & \text{Geschwindigkeit in der Propellerebene} \\ \hline 18 & v_e & [m/s] & m_e & s_e^2 \\ \hline 19 & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 10 & v_e & [m/s] & m_e & s_e^2 \\ \hline 11 & v_e & [m/s] & m_e & s_e^2 \\ \hline 11 & v_e & [m/s] & m_e & s_e^2 \\ \hline 12 & v_e & [m/s] & p_e & [m/s] & p_e & [m/s] \\ \hline 12 & v_e & [m/s] & p_e & [m/s] \\ \hline 12 & v_e & [m/s] & p_e & [m/s] \\ \hline 12 & v_e & [m/s] & p_e & [m/s] \\ \hline 13 & v_e & [m/s] & p_e & [m/s] \\ \hline 14 & v_e & [m/s] & p_e & [m/s] \\ \hline 15 & v_e & [m/s] & p_e & [m/s] \\ \hline 16 & v_e & [m/s] & p_e & [m/s] \\ \hline 17 & v_e & [m/s] & p_e & [m/s] \\ \hline 19 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m/s] \\ \hline 10 & v_e & [m/s] & p_e & [m$	09	$T[N = \frac{kg \cdot m}{2}]$	Schubkraft des freien Propellers	$T_{\nabla} [N = \frac{kg \cdot m}{2}]$	Schubkraft des ummantelte	n Propellers	
$ \begin{array}{ c c c c c }\hline 11 & v_e \ [m/s] & Strahlgeschwindigkeit weit vor dem Propeller \\ \hline 12 & v_s \ [m/s] & Strahlgeschwindigkeit in der Propellerebene \\ \hline 13 & v_a \ [m/s] & Strahlgeschwindigkeit in der Propellerebene \\ \hline 14 & v_b \ [m/s] & Strahlgeschwindigkeit in der Propellerebene \\ \hline 14 & v_b \ [m/s] & Strahlgeschwindigkeit in der Propellerebene \\ \hline 15 & v_a \ [m/s] & Strahlgeschwindigkeit in der Propellerebene \\ \hline 14 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 15 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 15 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 15 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 16 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 17 & v_b \ [m/s] & Geschwindigkeit in der Propellerebene \\ \hline 18 & vor dem Propeller & v_b \ [m/s] & Druck weit hinter dem Propeller \\ \hline 19 & in der Propellerebene & v_b \ [m/s] & Druck unmittelbar vor dem Propeller \\ \hline 19 & in der Propellerebene & v_b \ [m/s] & Mage \ [m/s] & Druck unmittelbar vor dem Propeller \\ \hline 19 & in der Propellerebene & v_b \ [m/s] & Mage \ [m/s] &$			'			<u> </u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c }\hline 13 & v_a \ [m/s] & Strahlgeschwindigkeit weit hinter dem Propeller \\\hline 14 & v_e \ [\frac{N}{N^2} = \frac{kg}{m \cdot s^2}] \\\hline 15 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 15 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 16 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 16 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 17 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 18 & vor dem Propeller \\\hline 19 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 19 & vor dem Propeller \\\hline 10 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 10 & vor dem Propeller \\\hline 10 & vor dem Propeller \\\hline 11 & vor dem Propeller \\\hline 12 & vor dem Propeller \\\hline 13 & vor dem Propeller \\\hline 14 & vor dem Propeller \\\hline 15 & vor dem Propeller \\\hline 16 & vor dem Propeller \\\hline 17 & v_e \ [\frac{N}{m^2} = \frac{kg}{m \cdot s^2}] \\\hline 18 & vor dem Propeller \\\hline 19 & vor dem Propeller \\\hline 10 & vor dem Propeller \\\hline 11 & vor dem Propeller \\\hline 12 & vor dem Propeller \\\hline 13 & vor dem Propeller \\\hline 14 & vor dem Propeller \\\hline 15 & vor dem$					ű		
$ \begin{array}{ c c c c }\hline 14 & p_e \mid \frac{1}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck welf vor dem Propeller} \\ \hline 15 & p_{se} \mid \frac{N}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck unmittelbar vor dem Propeller} \\ \hline 16 & p_{se} \mid \frac{N}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck unmittelbar vor dem Propeller} \\ \hline 16 & p_{se} \mid \frac{N}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck unmittelbar hinter dem Propeller} \\ \hline 17 & p_a \mid \frac{N}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck unmittelbar hinter dem Propeller} \\ \hline 17 & p_a \mid \frac{N}{m^2} = \frac{1}{m \cdot s^2} \mid & \text{Druck unmittelbar hinter dem Propeller} \\ \hline 18 & \text{vor dem Propeller} v = v_e \\ \hline 19 & \text{in der Propellerebene} v = v_e \\ \hline 20 & \text{hinter dem Propeller} v = v_a \\ \hline 20 & \text{hinter dem Propeller} v = v_a \\ \hline 21 & A_e \geq A_s \geq A_a \\ \hline & Schubkraft aus der Impulsänderung \\ \hline 22 & T = \rho \cdot \dot{V} \cdot v_a - \rho \cdot \dot{V} \cdot v_e \\ T = \rho \cdot \dot{V} \cdot v_a - \rho \cdot \dot{V} \cdot v_e \\ T = \rho \cdot \dot{V} \cdot v_a - \rho \cdot \dot{V} \cdot v_e \\ T = \rho \cdot \dot{V} \cdot v_a - v_e \cdot \dot{V} \cdot v_a - v_e \\ \hline & Volumenstrom durch die Propellerebene \\ \hline & \dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s \\ \hline & Schub \\ \hline & Schub \\ \hline & Schub \\ \hline & Schub \\ \hline & Energiegleichung vor dem Propeller (Bernoulli) \\ \hline & Energiegleichung vor dem Propeller (Bernoulli) \\ \hline \end{array}$	13		• •				
$ \begin{array}{ c c c c }\hline 16 & p_{sa} \left[\frac{N}{m^2} = \frac{kg}{m \cdot s^2}\right] & \text{Druck unmittelbar hinter dem Propeller} \\ \hline 17 & p_a \left[\frac{N}{m^2} = \frac{kg}{m \cdot s^2}\right] & \text{Druck weit hinter dem Propeller} \\ \hline 18 & \text{vor dem Propeller} & v = v_e \\ \hline 19 & \text{in der Propellerebene} & v = v_s \\ \hline 20 & \text{hinter dem Propeller} & v = v_a \\ \hline \hline 21 & A_e \geq A_s \geq A_a \\ \hline & & & & & & & & & & & & & & & & & &$	14	$p_e \left[\frac{N}{2} = \frac{kg}{2} \right]$	Druck weit vor dem Propeller	$p_e \left[\frac{N}{2} = \frac{kg}{2} \right]$	Druck vor dem Rohr		
$ \begin{array}{ c c c c }\hline 16 & p_{sa} \left[\frac{N}{m^2} = \frac{kg}{m \cdot s^2}\right] & \text{Druck unmittelbar hinter dem Propeller} \\ \hline 17 & p_a \left[\frac{N}{m^2} = \frac{kg}{m \cdot s^2}\right] & \text{Druck weit hinter dem Propeller} \\ \hline 18 & \text{vor dem Propeller} & v = v_e \\ \hline 19 & \text{in der Propellerebene} & v = v_s \\ \hline 20 & \text{hinter dem Propeller} & v = v_a \\ \hline \hline 21 & A_e \geq A_s \geq A_a \\ \hline & & & & & & & & & & & & & & & & & &$		$p_{sa} \left[\frac{N}{a} = \frac{kg}{a} \right]$	'	$p_{so}\left[\frac{N}{g} = \frac{kg}{g}\right]$		Propeller	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N kg	'	N kg		<u> </u>	
$ \begin{array}{ c c c c }\hline 18 & \text{vor dem Propeller} & v = v_e \\ \hline 19 & \text{in der Propellerebene} & v = v_s \\ \hline 20 & \text{hinter dem Propellere} & v = v_a \\ \hline 20 & \text{hinter dem Propellerebene} & v = v_a \\ \hline 21 & & & & & & & & & & & & & & & & & & $			·	$\rho_{sa} \left[\frac{1}{m^2} = \frac{1}{m \cdot s^2} \right]$	Prack millillengt hinter de	ııı Fioheliei	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	$p_a \ [\frac{w}{m^2} = \frac{\kappa y}{m \cdot s^2}]$	·	$p_a \left[\frac{n}{m^2} = \frac{\kappa y}{m \cdot s^2} \right]$	Druck hinter dem Rohr		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18		ξ ,			Kontinuitäts-	
21 $A_e \ge A_s \ge A_a$ $A_s = A_a = \pi \cdot \frac{D_s^2}{4}$ Schubkraft aus der Impulsänderung $T = \rho \cdot \dot{V} \cdot v_a - \rho \cdot \dot{V} \cdot v_e$ $T = \rho \cdot \dot{V} \cdot (v_a - v_e) = \dot{m} \cdot (v_a - v_e)$ Volumenstrom durch die Propellerebene $\dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s$ Volumenstrom durch die Propellerebene $\dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s$ Volumenstrom durch die Propellerebene $\dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s$ Schub $\dot{V} = A_s \cdot v_s = A_s \cdot v_s \cdot v_s$,			•	
Schubkraft aus der Impulsänderung $T = \rho \cdot \dot{V} \cdot v_a - \rho \cdot \dot{V} \cdot v_e \\ T = \rho \cdot \dot{V} \cdot (v_a - v_e) = \dot{m} \cdot (v_a - v_e)$ $T_{\Sigma} = \rho \cdot \dot{V}_{\Sigma} \cdot v_a - \rho \cdot \dot{V}_{\Sigma} \cdot v_e \\ T_{\Sigma} = \rho \cdot \dot{V}_{\Sigma} \cdot (v_a - v_e) = \dot{m}_{\Sigma} \cdot (v_a - v_e)$ Volumenstrom durch die Propellerebene $\dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s$ Volumenstrom durch die Propellerebene $\dot{V}_{\Sigma} = A_s \cdot v_a \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_s = A_s \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_a$ Siehe Bild u. Z. 20 $T_{\Sigma} = \rho \cdot A_s \cdot v_s \cdot v_s \cdot (v_a - v_e)$ Infolge der Ummantelung (Rohr) ist : $v_s = v_a$ Siehe Bild u. Z. 20 $T_{\Sigma} = \rho \cdot A_s \cdot v_s \cdot$		hinter dem Prope	W .	hinter dem Rohr $v = v_a = v_{s\Sigma}$ (Stromronre)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cobultine# !		Onlevel 1 6			
$T = \rho \cdot \dot{V} \cdot (v_a - v_e) = \dot{m} \cdot (v_a - v_e)$ $Volumenstrom durch die Propellerebene$ $\dot{V} = A_s \cdot v_s = \pi \cdot \frac{D_s^2}{4} \cdot v_s$ $Volumenstrom durch die Propellerebene$ $\dot{V}_{\Sigma} = A_s \cdot v_s = A_s \cdot v_a \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_s = A_s \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_a$ $Volumenstrom durch die Propellerebene$ $\dot{V}_{\Sigma} = A_s \cdot v_s = A_s \cdot v_a \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_s = A_s \cdot \pi \cdot \frac{D_s^2}{4} \cdot v_a$ $Volumenstrom durch die Propellerebene$ $\dot{V}_{\Sigma} = A_s \cdot v_s \cdot v_s = A_s \cdot v_s \cdot \frac{D_s^2}{4} \cdot v_s = A_s \cdot \pi \cdot \frac{D_s^2}{4} $	22						
Volumenstrom durch die Propellerebene $\dot{V} = A_S \cdot v_S = \pi \cdot \frac{D_S^2}{4} \cdot v_S$ Volumenstrom durch die Propellerebene $\dot{V}_{\Sigma} = A_S \cdot v_A \cdot \pi \cdot \frac{D_S^2}{4} \cdot v_S = A_S \cdot \pi \cdot \frac{D_S^2}{4} \cdot v_A$ Siehe Bild u. Z. 20 Schub $T = \rho \cdot A_S \cdot v_S \cdot (v_A - v_e)$ The propellerebene $\dot{V}_{\Sigma} = A_S \cdot v_A \cdot \pi \cdot \frac{D_S^2}{4} \cdot v_S = A_S \cdot \pi \cdot \frac{D_S^2}{4} \cdot v_A$ Siehe Bild u. Z. 20 25 Ermittlung von v_S Infolge der Ummantelung (Rohr) ist : $v_S = v_A$ Siehe Bild u. Z. 20 Energiegleichung vor dem Propeller (Bernoulli) Energiegleichung vor dem Propeller (Bernoulli)	22	$I = \rho \cdot v \cdot v_a - \rho \cdot v \cdot v_e$ $T = \rho \cdot \dot{V} \cdot (v_a - v_a) - \dot{v}_a \cdot (v_a - v_b)$		$I_{\Sigma} = \rho \cdot v_{\Sigma} \cdot v_{a} - \rho \cdot v_{\Sigma} \cdot v_{e}$ $T_{\Sigma} = \rho \cdot \dot{V} \cdot (v_{1} - v_{2}) - \dot{w} \cdot (v_{2} - v_{2})$			
		Volumenstrom durch die Propellerehene					
Schub $T = \rho \cdot A_s \cdot v_s \cdot (v_a - v_e)$ Schub $T_{\Sigma} = \rho \cdot A_s \cdot v_{s\Sigma} \cdot (v_a - v_e)$ Ermittlung von v_s Infolge der Ummantelung (Rohr) ist : $v_s = v_a$ Siehe Bild u. Z. 20 Energiegleichung vor dem Propeller (Bernoulli) Energiegleichung vor dem Propeller (Bernoulli)	23		• -				
Ermittiung von v_s Infolge der Ummantelung (Ronr) ist : $v_s = v_a$ u. Z. 20 Energiegleichung vor dem Propeller (Bernoulli) Energiegleichung vor dem Propeller (Bernoulli)	24	Schub Schub					
Energiegleichung vor dem Propeller (Bernoulli) Energiegleichung vor dem Propeller (Bernoulli)	25	Ermittlung von v_s		Infolge der Ummantelung (Rohr) ist : $v_s = v_a$			
		Energiegleichung vor dem Propeller (Bernoulli)					
$\frac{1}{\rho} + \frac{1}{2} = \frac{1}{\rho} + \frac{1}{2}$	26						
		$\frac{\overline{\rho}}{\rho}$ + -	$\frac{1}{2} = \frac{1}{\rho} + \frac{1}{2}$	$\frac{\overline{\rho}}{\rho} + \frac{\overline{2}}{2} - \frac{\overline{\rho}}{\rho} + \frac{\overline{2}}{2}$			

1/2 www.jbladt.jimdo.com © K.-J. Bladt Bladt / 5. Oktober 2012 Printed: 2015-09-11

Vergleich von freiem und ummanteltem Propeller (Schubanteilziffer) Comparison of free running propeller and covered propeller

	Energiegleichung hinter dem Propeller (Bernoulli)	Energiegleichung hinter dem Propeller (Bernoulli)	
27	$\frac{p_a}{\rho} + \frac{v_a^2}{2} = \frac{p_{sa}}{\rho} + \frac{v_s^2}{2}$	$\frac{p_a}{\rho} + \frac{v_a^2}{2} = \frac{p_{sa}}{\rho} + \frac{v_{s\Sigma}^2}{2}$	
	Der Druck weit vor und weit hinter dem Propeller ist gleich	Der Druck vor und hinter dem Rohr ist gleich:	
28	$p_a=p_e$ Die Geschwindigkeiten sind unterschiedlich $v_e \leq v_s \leq v_a$	$p_a=p_e$ Geschwindigkeit des Strahls <u>im</u> Tunnel vor und hinter dem Propeller sowie in der Propellerebene ist $v_{s\Sigma}=v_a$	
29	Durch Subtraktion entsteht $\frac{p_a}{\rho} - \frac{p_e}{\rho} + \frac{v_a^2}{2} - \frac{v_e^2}{2} = \frac{p_{sa}}{\rho} - \frac{p_{se}}{\rho} + \frac{v_s^2}{2} - \frac{v_s^2}{2}$	Durch Subtraktion entsteht $\frac{p_a}{\rho} - \frac{p_e}{\rho} + \frac{v_a^2}{2} - \frac{v_e^2}{2} = \frac{p_{sa}}{\rho} - \frac{p_{se}}{\rho} + \frac{v_{s\Sigma}^2}{2} - \frac{v_{s\Sigma}^2}{2}$	
30	Der Druckunterschied unmittelbar vor und hinter dem Propeller (idealisierte Scheibe) ist dann $\frac{p_{sa}}{\rho} - \frac{p_{se}}{\rho} = \frac{v_a^2}{2} - \frac{v_e^2}{2}$ $\Delta p = p_{sa} - p_{se} = \frac{\rho}{2} \cdot (v_a^2 - v_e^2)$	Die Druckdifferenz unmittelbar vor und hinter dem Propeller (idealisierte Scheibe) ist dann $\frac{p_{sa}}{\rho} - \frac{p_{se}}{\rho} = \frac{v_s^2}{2} - \frac{v_e^2}{2}$ $\Delta p_{\Sigma} = p_{sa} - p_{se} = \frac{\rho}{2} \cdot (v_a^2 - v_e^2)$	
31	Der Schub ergibt sich zu $T = \Delta p \cdot A_s = \frac{\rho}{2} \cdot (v_a^2 - v_e^2) \cdot A_s$	Der Schub ergibt sich zu $T_\Sigma = \Delta p_\Sigma \cdot A_s = \frac{\rho}{2} \cdot (v_a^2 - v_e^2) \cdot A_s$	
32	Zusammen mit der aus dem Impulssatz ermittelten Gleichung ergibt sich $T = \frac{\rho}{2} \cdot (v_a^2 - v_e^2) \cdot A_s = \rho \cdot A_s \cdot v_s \cdot (v_a - v_e)$		
33	und daraus die Strahlgeschwindigkeit im Propeller (Froude) $v_s = \frac{v_a + v_e}{2}$	Infolge der Ummantelung (Rohr) ist die Strahlgeschwindigkeit $v_s=v_a$	Siehe Bild u. Z. 20, 23
34	Impulssatz $T = \rho \cdot A_s \cdot \frac{v_a + v_e}{2} \cdot (v_a - v_e)$ $v_e = 0: \qquad T = A_s \cdot \frac{\rho}{2} \cdot v_a^2$	Impulssatz $T_{\Sigma} = \rho \cdot A_{s} \cdot v_{s} \cdot (v_{s} - v_{e}) = \rho \cdot A_{s} \cdot v_{a} \cdot (v_{a} - v_{e})$	Siehe Z. 24
35	$v_e = 0$: $T = A_s \cdot \frac{\rho}{2} \cdot v_a^2$	$v_e = 0$: $v_s = v_a \rightarrow T_{\Sigma} = \rho \cdot A_s \cdot v_a^2$	
36	$\frac{freier\ Propeller}{ummantelter\ Propeller} = \tau = \frac{T}{T_{\Sigma}} = \frac{A_{S}\frac{\rho}{2}v_{a}^{2}}{A_{S}\cdot\rho\cdot v_{a}^{2}} = \frac{1}{2}$	Schubanteilziffer für Querschubanlage im Idealfall	
37	Quelle: Willi Bohl: Technische Strömungslehre, VEB Fachbuchverlag Leipzig u. Vogel-Buchverlag Würzburg, 6. Auflage 1984	.1.	

Klaus-Jürgen Bladt Streuwiesenweg 60 18119 Rostock Germany

2/2 www.jbladt.jimdo.com © K.-J. Bladt Bladt / 5. Oktober 2012 Printed: 2015-09-11